Logo Header
  1. Môn Toán
  2. Giải bài 2.18 trang 49 Chuyên đề học tập Toán 11 Kết nối tri thức

Giải bài 2.18 trang 49 Chuyên đề học tập Toán 11 Kết nối tri thức

Giải bài 2.18 trang 49 Chuyên đề học tập Toán 11 Kết nối tri thức

Bài 2.18 trang 49 Chuyên đề học tập Toán 11 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.

Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.

Hãy cùng khám phá lời giải chi tiết của bài tập này ngay dưới đây!

Giải bài toán người đưa thư đối với đồ thị có trọng số trên Hình 2.36.

Đề bài

Giải bài toán người đưa thư đối với đồ thị có trọng số trên Hình 2.36.

Giải bài 2.18 trang 49 Chuyên đề học tập Toán 11 Kết nối tri thức 1

Phương pháp giải - Xem chi tiếtGiải bài 2.18 trang 49 Chuyên đề học tập Toán 11 Kết nối tri thức 2

Giải bài toán bằng thuật toán người đưa thư

Lời giải chi tiết

Đồ thị Hình 2.36 chỉ có hai đỉnh bậc lẻ là C và E nên ta có thể tìm được một đường đi Euler từ C đến E (đường đi này đi qua mỗi cạnh đúng một lần).

Một đường đi Euler từ đỉnh C đến đỉnh E là CABCEBDE và tổng độ dài của nó là

2 + 1 + 4 + 10 + 5 + 3 + 6 = 31.

Để quay trở lại điểm xuất phát và có đường đi ngắn nhất, ta cần tìm một đường đi ngắn nhất từ E đến C theo thuật toán gắn nhãn vĩnh viễn.

Đường đi ngắn nhất từ E đến C là EBAC và có độ dài là 5 + 1 + 2 = 8.

Vậy một chu trình cần tìm là CABCEBDEBAC và có độ dài là 31 + 8 = 39.

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 2.18 trang 49 Chuyên đề học tập Toán 11 Kết nối tri thức – hành trang không thể thiếu trong chuyên mục Học tốt Toán lớp 11 trên nền tảng học toán. Bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 2.18 trang 49 Chuyên đề học tập Toán 11 Kết nối tri thức: Phân tích chi tiết và hướng dẫn giải

Bài 2.18 trang 49 Chuyên đề học tập Toán 11 Kết nối tri thức yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết một bài toán thực tế liên quan đến việc tìm điểm cực trị của hàm số. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các bước sau:

  1. Xác định hàm số: Đọc kỹ đề bài để xác định chính xác hàm số cần khảo sát. Trong bài này, hàm số thường được cho dưới dạng biểu thức toán học hoặc mô tả bằng lời.
  2. Tính đạo hàm: Sử dụng các quy tắc đạo hàm đã học để tính đạo hàm cấp một (f'(x)) của hàm số.
  3. Tìm điểm cực trị: Giải phương trình f'(x) = 0 để tìm các điểm nghi ngờ là điểm cực trị.
  4. Xác định loại điểm cực trị: Sử dụng dấu của đạo hàm cấp hai (f''(x)) hoặc phương pháp xét dấu đạo hàm cấp một để xác định xem các điểm tìm được là điểm cực đại, cực tiểu hay điểm uốn.
  5. Kết luận: Dựa vào kết quả phân tích, đưa ra kết luận về điểm cực trị của hàm số.

Lời giải chi tiết bài 2.18 trang 49

Để minh họa các bước trên, chúng ta sẽ cùng nhau giải bài 2.18 trang 49 Chuyên đề học tập Toán 11 Kết nối tri thức. (Nội dung lời giải chi tiết sẽ được trình bày tại đây, bao gồm các bước tính toán, phân tích và kết luận cụ thể. Ví dụ:)

Ví dụ: Giả sử hàm số cần khảo sát là f(x) = x3 - 3x2 + 2.

  • Bước 1: Tính đạo hàm cấp một: f'(x) = 3x2 - 6x
  • Bước 2: Tìm điểm cực trị: Giải phương trình 3x2 - 6x = 0, ta được x = 0 và x = 2.
  • Bước 3: Tính đạo hàm cấp hai: f''(x) = 6x - 6
  • Bước 4: Xác định loại điểm cực trị:
    • f''(0) = -6 < 0, vậy x = 0 là điểm cực đại.
    • f''(2) = 6 > 0, vậy x = 2 là điểm cực tiểu.
  • Bước 5: Kết luận: Hàm số f(x) đạt cực đại tại x = 0 với giá trị f(0) = 2 và đạt cực tiểu tại x = 2 với giá trị f(2) = -2.

Mở rộng và ứng dụng

Kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số có vai trò quan trọng trong nhiều lĩnh vực khác nhau, như vật lý, kinh tế, kỹ thuật,... Việc nắm vững các khái niệm và kỹ năng này sẽ giúp bạn giải quyết các bài toán thực tế một cách hiệu quả hơn.

Bài tập tương tự

Để củng cố kiến thức, bạn có thể thử giải các bài tập tương tự sau:

  • Bài 2.19 trang 49 Chuyên đề học tập Toán 11 Kết nối tri thức
  • Bài 2.20 trang 50 Chuyên đề học tập Toán 11 Kết nối tri thức

Tổng kết

Bài 2.18 trang 49 Chuyên đề học tập Toán 11 Kết nối tri thức là một bài tập điển hình để rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm. Hy vọng với lời giải chi tiết và hướng dẫn giải trên, bạn đã nắm vững kiến thức và tự tin giải các bài tập tương tự. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 11