Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn cách giải bài 2.4 trang 40 thuộc Chuyên đề học tập Toán 11 Kết nối tri thức một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chứng minh rằng một đồ thị đầy đủ có n đỉnh thì có \(\frac{{n\left( {n - 1} \right)}}{2}\) cạnh.
Đề bài
Chứng minh rằng một đồ thị đầy đủ có n đỉnh thì có \(\frac{{n\left( {n - 1} \right)}}{2}\) cạnh.
Phương pháp giải - Xem chi tiết
Một đồ thị là đầy đủ khi và chỉ khi mỗi cặp đỉnh của nó đều được nối bằng một cạnh.
Lời giải chi tiết
Do đồ thị đầy đủ nên mỗi đỉnh được nối với n – 1 đỉnh khác, tức là số cạnh là n(n – 1) cạnh.
Tuy nhiên, do ở trên ta đã tính lặp một cạnh 2 lần, nên số cạnh thực tế của đồ thị là \(\frac{{n\left( {n - 1} \right)}}{2}\).
Bài 2.4 trang 40 Chuyên đề học tập Toán 11 Kết nối tri thức thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về vectơ trong không gian để giải quyết các bài toán hình học. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm như vectơ, phép cộng, trừ vectơ, tích của một số với vectơ, và các tính chất liên quan.
Bài tập 2.4 thường bao gồm các dạng bài sau:
Để giải bài 2.4 trang 40 Chuyên đề học tập Toán 11 Kết nối tri thức, bạn cần thực hiện theo các bước sau:
Bài toán: Cho hình hộp ABCD.A'B'C'D'. Gọi M là trung điểm của cạnh AB. Chứng minh rằng vectơ MM' vuông góc với mặt phẳng (ABB'A').
Lời giải:
Gọi O là gốc tọa độ. Đặt A(0;0;0), B(a;0;0), C(a;b;0), D(0;b;0), A'(0;0;c), B'(a;0;c), C'(a;b;c), D'(0;b;c). Khi đó, M có tọa độ (a/2; 0; 0) và M' có tọa độ (a/2; 0; c).
Vectơ MM' = (0; 0; c). Vectơ AB = (a; 0; 0) và vectơ AA' = (0; 0; c).
Ta có: MM'.AB = 0 và MM'.AA' = 0. Do đó, vectơ MM' vuông góc với cả vectơ AB và vectơ AA', suy ra vectơ MM' vuông góc với mặt phẳng (ABB'A').
Để học tốt môn Toán 11, bạn có thể tham khảo các tài liệu sau:
Hy vọng rằng bài viết này đã giúp bạn hiểu rõ hơn về cách giải bài 2.4 trang 40 Chuyên đề học tập Toán 11 Kết nối tri thức. Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán!