Bài 1.29 trang 33 Chuyên đề học tập Toán 11 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.
Hãy cùng khám phá lời giải chi tiết của bài tập này ngay dưới đây!
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): x2 + y2 – 2x – 4y – 4 = 0.
Đề bài
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): x2 + y2 – 2x – 4y – 4 = 0. Viết phương trình của đường tròn (C') là ảnh của đường tròn (C) qua phép đối xứng tâm A(3; – 3).
Phương pháp giải - Xem chi tiết
Cho điểm O, phép biến hình biến điểm O thành chính nó và biến mỗi điểm \(M \ne O\) thành điểm M’ sao cho O là trung điểm của MM’ được gọi là phép đối xứn tâm O, kí hiệu . Điểm O được gọi là tâm đối xứng.
Nếu thì \(\left\{ \begin{array}{l}{x_{M'}} + {x_M} = 2{x_I}\\{y_{M'}} + {y_M} = 2{y_I}\end{array} \right.\) (I là trung điểm của MM’)
Lời giải chi tiết
Ta có \(\left( C \right):{\rm{ }}{x^2} + {y^2}-2x-4y-4 = 0 \Leftrightarrow {x^2} + {y^2}-2.1{\rm{ }}x-2.2y-4 = 0.\)
Suy ra đường tròn (C) có tâm I(1; 2) và bán kính \(R = \sqrt {{1^2} + {2^2} - \left( { - 4} \right)} = 3\).
Gọi I' và R' lần lượt là tâm và bán kính của đường tròn (C'). Vì (C') là ảnh của (C) qua phép đối xứng tâm A(3; – 3) nên I' là ảnh của I qua phép đối xứng tâm A(3; – 3) và R' = R = 3.
Vì I' là ảnh của I qua phép đối xứng tâm A nên A là trung điểm của II'.
Suy ra \(\left\{ {\begin{array}{*{20}{l}}{{x_{I'}} = 2{x_A} - {x_I} = 2.3 - 1 = 5}\\{{y_{I'}} = 2{y_A} - {y_I} = 2.\left( { - 3} \right) - 2 = - 8}\end{array}} \right.\)nên I'(5; – 8).
Vậy phương trình đường tròn (C') là
\({\left( {x-5} \right)^2}\; + {\rm{ }}{\left[ {y-\left( {-8} \right)} \right]^2} = {3^2}\; \Leftrightarrow {\left( {x-5} \right)^2}\; + {\left( {y + 8} \right)^2}\; = 9.\)
Bài 1.29 thuộc Chuyên đề học tập Toán 11 Kết nối tri thức tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế liên quan đến sự biến thiên của hàm số. Bài tập này yêu cầu học sinh phải nắm vững các khái niệm như đạo hàm, cực trị, và khoảng đơn điệu của hàm số.
Bài tập 1.29 thường có dạng yêu cầu học sinh xét hàm số f(x) = ... (một hàm số cụ thể) và thực hiện các yêu cầu sau:
Để giải bài 1.29 trang 33 Chuyên đề học tập Toán 11 Kết nối tri thức, chúng ta thực hiện theo các bước sau:
Sử dụng các quy tắc tính đạo hàm đã học, ta tính đạo hàm của hàm số f(x). Ví dụ, nếu f(x) = x3 - 3x2 + 2, thì f'(x) = 3x2 - 6x.
Để tìm các điểm cực trị, ta giải phương trình f'(x) = 0. Các nghiệm của phương trình này là các hoành độ của các điểm cực trị. Sau đó, ta xét dấu của f'(x) để xác định loại cực trị (cực đại hoặc cực tiểu).
Ví dụ, nếu f'(x) = 3x2 - 6x = 0, thì 3x(x - 2) = 0, suy ra x = 0 hoặc x = 2. Ta xét dấu của f'(x) trên các khoảng (-∞, 0), (0, 2), và (2, +∞) để xác định loại cực trị.
Hàm số f(x) đồng biến trên khoảng (a, b) nếu f'(x) > 0 với mọi x thuộc (a, b). Hàm số f(x) nghịch biến trên khoảng (a, b) nếu f'(x) < 0 với mọi x thuộc (a, b).
Dựa vào các thông tin đã tìm được (cực trị, khoảng đồng biến, nghịch biến), ta có thể vẽ được đồ thị hàm số f(x).
Giả sử bài tập 1.29 yêu cầu giải hàm số f(x) = x3 - 3x2 + 2. Ta thực hiện như sau:
Để học tốt môn Toán 11, bạn có thể tham khảo các tài liệu sau:
Bài 1.29 trang 33 Chuyên đề học tập Toán 11 Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Hy vọng với lời giải chi tiết và các mẹo giải bài tập trên, bạn sẽ tự tin giải quyết bài tập này và đạt kết quả tốt trong môn Toán.