Logo Header
  1. Môn Toán
  2. Giải bài 2.3 trang 40 Chuyên đề học tập Toán 11 Kết nối tri thức

Giải bài 2.3 trang 40 Chuyên đề học tập Toán 11 Kết nối tri thức

Giải bài 2.3 trang 40 Chuyên đề học tập Toán 11 Kết nối tri thức

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 2.3 trang 40 thuộc Chuyên đề học tập Toán 11 Kết nối tri thức một cách nhanh chóng và hiệu quả.

Chúng tôi cam kết mang đến cho bạn những phương pháp giải toán khoa học, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Một đồ thị con của đồ thị G là một đồ thị mà mọi đỉnh của nó đều là đỉnh của G

Đề bài

Một đồ thị con của đồ thị G là một đồ thị mà mọi đỉnh của nó đều là đỉnh của G và mọi cạnh của nó cũng là cạnh của G.

Những đồ thị nào trong các hình a), b), c) dưới đây là đồ thị con của đồ thị G?

Giải bài 2.3 trang 40 Chuyên đề học tập Toán 11 Kết nối tri thức 1

Phương pháp giải - Xem chi tiếtGiải bài 2.3 trang 40 Chuyên đề học tập Toán 11 Kết nối tri thức 2

Một đồ thị G không liên thông đều được chia thành một số đồ thị (gọi là đồ thị con của G) liên thông, rời nhau, mỗi đồ thị con đó gọi là một thành phần liên thông của G.

Lời giải chi tiết

Các đồ thị a) và c) là đồ thị con của đồ thị G vì mọi đỉnh và mọi cạnh của từng đồ thị a) và c) đều là đỉnh và cạnh của G.

Đồ thị b) không phải là đồ thị con của đồ thị G vì đồ thị b) chứa cạnh UW không phải là cạnh của G.

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 2.3 trang 40 Chuyên đề học tập Toán 11 Kết nối tri thức – hành trang không thể thiếu trong chuyên mục Sách bài tập Toán 11 trên nền tảng soạn toán. Bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 2.3 trang 40 Chuyên đề học tập Toán 11 Kết nối tri thức: Hướng dẫn chi tiết

Bài 2.3 trang 40 Chuyên đề học tập Toán 11 Kết nối tri thức thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài toán này thường yêu cầu học sinh phải hiểu rõ các khái niệm về đạo hàm, quy tắc tính đạo hàm và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.

Phân tích đề bài và xác định yêu cầu

Trước khi bắt đầu giải bài, chúng ta cần đọc kỹ đề bài để hiểu rõ yêu cầu. Thông thường, đề bài sẽ yêu cầu chúng ta tìm đạo hàm của một hàm số, giải phương trình đạo hàm bằng 0 để tìm các điểm cực trị, hoặc xét dấu đạo hàm để xác định khoảng đơn điệu của hàm số. Việc phân tích đề bài một cách cẩn thận sẽ giúp chúng ta lựa chọn phương pháp giải phù hợp và tránh sai sót.

Phương pháp giải bài 2.3 trang 40

Để giải bài 2.3 trang 40 Chuyên đề học tập Toán 11 Kết nối tri thức, chúng ta có thể áp dụng các bước sau:

  1. Bước 1: Tính đạo hàm của hàm số. Sử dụng các quy tắc tính đạo hàm đã học để tìm đạo hàm của hàm số.
  2. Bước 2: Giải phương trình đạo hàm bằng 0. Giải phương trình f'(x) = 0 để tìm các điểm cực trị của hàm số.
  3. Bước 3: Xét dấu đạo hàm. Xét dấu đạo hàm trên các khoảng xác định của hàm số để xác định khoảng đơn điệu của hàm số.
  4. Bước 4: Kết luận. Dựa vào kết quả xét dấu đạo hàm, kết luận về khoảng đồng biến, nghịch biến và cực trị của hàm số.

Ví dụ minh họa

Giả sử chúng ta có hàm số f(x) = x3 - 3x2 + 2. Để giải bài 2.3 trang 40, chúng ta thực hiện các bước sau:

  • Bước 1: Tính đạo hàm. f'(x) = 3x2 - 6x
  • Bước 2: Giải phương trình đạo hàm bằng 0. 3x2 - 6x = 0 => x = 0 hoặc x = 2
  • Bước 3: Xét dấu đạo hàm.
    Khoảngf'(x)f(x)
    (-∞; 0)+Đồng biến
    (0; 2)-Nghịch biến
    (2; +∞)+Đồng biến
  • Bước 4: Kết luận. Hàm số f(x) đồng biến trên các khoảng (-∞; 0) và (2; +∞), nghịch biến trên khoảng (0; 2). Hàm số đạt cực đại tại x = 0 và cực tiểu tại x = 2.

Lưu ý khi giải bài tập

Khi giải bài 2.3 trang 40 Chuyên đề học tập Toán 11 Kết nối tri thức, bạn cần lưu ý một số điểm sau:

  • Đảm bảo nắm vững các quy tắc tính đạo hàm.
  • Giải phương trình đạo hàm bằng 0 một cách chính xác.
  • Xét dấu đạo hàm một cách cẩn thận để xác định khoảng đơn điệu của hàm số.
  • Kiểm tra lại kết quả để đảm bảo tính chính xác.

Ứng dụng của đạo hàm trong thực tế

Đạo hàm có rất nhiều ứng dụng trong thực tế, chẳng hạn như:

  • Vật lý: Tính vận tốc, gia tốc của vật chuyển động.
  • Kinh tế: Tính chi phí biên, doanh thu biên.
  • Kỹ thuật: Tối ưu hóa thiết kế, điều khiển hệ thống.

Tổng kết

Bài 2.3 trang 40 Chuyên đề học tập Toán 11 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng vận dụng đạo hàm để giải quyết các bài toán thực tế. Hy vọng với hướng dẫn chi tiết này, bạn sẽ tự tin hơn trong quá trình học tập và đạt kết quả tốt nhất.

Tài liệu, đề thi và đáp án Toán 11