Chào mừng các em học sinh đến với lời giải chi tiết bài 1 trang 24 Chuyên đề học tập Toán 11 Chân trời sáng tạo. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập hiệu quả, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán, cung cấp các bài giải chuẩn xác, dễ hiểu và phù hợp với chương trình học.
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) có phương trình:
Đề bài
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) có phương trình:
\(\left( C \right):{\rm{ }}{x^2}\; + {\rm{ }}{y^2}\;-{\rm{ }}4x{\rm{ }}-{\rm{ }}5{\rm{ }} = {\rm{ }}0\). Viết phương trình ảnh của (C) qua phép đối xứng tâm O.
Phương pháp giải - Xem chi tiết
Tìm ảnh của tâm I qua phép đối xứng. Áp dụng:
Nếu \(M'{\rm{ }} = {\rm{ }}{Đ_I}\left( M \right)\) thì \(\left\{ \begin{array}{l}{x_{M'}} + {x_M} = 2{x_I}\\{y_{M'}} + {y_M} = 2{y_I}\end{array} \right.\) (I là trung điểm của MM’)
Lời giải chi tiết
Đường tròn \(\left( C \right):{\rm{ }}{x^2}\; + {\rm{ }}{y^2}\;-{\rm{ }}4x{\rm{ }}-{\rm{ }}5{\rm{ }} = {\rm{ }}0\) có tâm I(2; 0), bán kính \(R = \sqrt {{2^2} + {0^2} - \left( { - 5} \right)} = 3\)
Gọi đường tròn (C’) là ảnh của đường tròn (C) qua phép đối xứng tâm O.
Suy ra đường tròn (C’) có tâm là ảnh của I(2; 0) và bán kính \(R'{\rm{ }} = {\rm{ }}R{\rm{ }} = {\rm{ }}3.\)
Gọi \(I' = {\rm{ }}{Đ_O}\left( I \right),\) suy ra O là trung điểm II’ với I(2; 0).
Do đó \(\left\{ \begin{array}{l}{x_{I'}} = 2{x_O} - {x_I} = 2.0 - 2 = - 2\\{y_{I'}} = 2{y_O} - {y_I} = 2.0 - 0 = 0\end{array} \right.\)
Vì vậy tọa độ \(I'\left( {-2;{\rm{ }}0} \right).\)
Vậy đường tròn (C’) có tâm I’(–2; 0) và bán kính R’ = 3 có phương trình là:
\({\left( {x{\rm{ }} + {\rm{ }}2} \right)^2}\; + {\rm{ }}{y^2}\; = {\rm{ }}9.\)
Bài 1 trang 24 Chuyên đề học tập Toán 11 Chân trời sáng tạo thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về hàm số và đồ thị để giải quyết các bài toán thực tế. Bài tập này yêu cầu học sinh phải hiểu rõ các khái niệm về tập xác định, tập giá trị, tính đơn điệu, cực trị của hàm số, cũng như khả năng vẽ đồ thị hàm số và phân tích các yếu tố của đồ thị.
Bài 1 thường bao gồm các dạng bài tập sau:
Để giải bài 1 trang 24 Chuyên đề học tập Toán 11 Chân trời sáng tạo một cách hiệu quả, học sinh cần:
Ví dụ: Xét hàm số y = x2 - 4x + 3. Hãy xác định tập xác định, tập giá trị, tính đơn điệu và vẽ đồ thị của hàm số.
Giải:
Khi giải bài tập về hàm số, học sinh cần lưu ý:
Bài 1 trang 24 Chuyên đề học tập Toán 11 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số và đồ thị. Bằng cách nắm vững kiến thức lý thuyết, luyện tập thường xuyên và áp dụng các phương pháp giải hiệu quả, các em học sinh có thể tự tin giải quyết bài tập này và đạt kết quả tốt trong môn Toán.