Chào mừng các em học sinh đến với lời giải chi tiết bài 17 trang 42 Chuyên đề học tập Toán 11 Chân trời sáng tạo. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập một cách dễ hiểu và hiệu quả.
Giaitoan.edu.vn luôn đồng hành cùng các em trong quá trình học tập, giúp các em nắm vững kiến thức và đạt kết quả tốt nhất.
Thấu kính hội tụ có thể cho ảnh thật hoặc ảnh ảo A’B’ của vật AB. Tìm phép vị tự biến AB thành A’B’ trong Hình 3 và Hình 4.
Đề bài
Thấu kính hội tụ có thể cho ảnh thật hoặc ảnh ảo A’B’ của vật AB. Tìm phép vị tự biến AB thành A’B’ trong Hình 3 và Hình 4.
Phương pháp giải - Xem chi tiết
Cho điểm O cố định và một số thực k, \(k \ne 0\). Phép biến hình biến mỗi điểm M thành điểm M’ sao cho \(\overrightarrow {OM'} = k\overrightarrow {OM} \) được gọi là phép vị tự tâm O tỉ số k, kí hiệu \({V_{(O,k)}}\). O được gọi là tâm vị tự, k gọi là tỉ số vị tự.
Lời giải chi tiết
⦁ Ta xét Hình 4a:
Để tìm phép vị tự biến vật AB thành ảnh A’B’, ta tìm phép vị tự biến A, B lần lượt thành A’, B’.
Ta có AA’ cắt BB’ tại O.
Vì ba điểm O, A, A’ thẳng hàng và A, A’ nằm cùng phía đối với O.
Suy ra \(\overrightarrow {OA'} = k\overrightarrow {OA} \), với k > 0.
Do đó \({V_{\left( {O,{\rm{ }}k} \right)}}\left( A \right){\rm{ }} = {\rm{ }}A',{\rm{ }}OA'{\rm{ }} = {\rm{ }}k.OA.\)
Vì vậy \(k = \frac{{OA'}}{{OA}}\)
Xét \(\Delta \)OA’B’ và \(\Delta \)OAB, có:
\(\widehat {AOB}\) chung;
\(\widehat {OA'B'} = \widehat {OAB} = 90^\circ \)
Do đó \(\Delta OA'B'\) đồng dạng \(\Delta OAB\,\,(g.g)\)
Suy ra \(\frac{{OB'}}{{OB}} = \frac{{OA'}}{{OA}} = k\)
Vì vậy \(OB' = {\rm{ }}k.OB.\)
Mà ba điểm O, B, B’ thẳng hàng và B, B’ nằm cùng phía đối với O.
Suy ra \(\overrightarrow {OB'} = k\overrightarrow {OB} \)
Do đó \({V_{\left( {O,{\rm{ }}k} \right)}}\left( B \right){\rm{ }} = {\rm{ }}B'.\)
Vậy phép vị tự tâm O, tỉ số \(k = \frac{{OA'}}{{OA}}\) biến vật AB thành ảnh A’B’.
⦁ Ta xét Hình 4b:
Để tìm phép vị tự biến vật AB thành ảnh A’B’, ta tìm phép vị tự biến A, B lần lượt thành A’, B’.
Ta có AA’ cắt BB’ tại O.
Vì ba điểm O, A, A’ thẳng hàng và A, A’ nằm khác phía đối với O.
Suy ra \(\overrightarrow {OA'} = k\overrightarrow {OA} \) với k < 0.
Do đó \({V_{\left( {O,{\rm{ }}k} \right)}}\left( A \right) = A',{\rm{ }}OA' = \left| k \right|.OA.\)
Vì vậy \(k = - \frac{{OA'}}{{OA}}\)
Xét \(\Delta \)OA’B’ và \(\Delta \)OAB, có:
\(\widehat {A'OB'} = \widehat {AOB}\) (đối đỉnh);
\(\widehat {OA'B'} = \widehat {OAB} = 90^\circ \)
Do đó \(\Delta OA'B'\) đồng dạng \(\Delta OAB\,(g.g)\)
Suy ra \(\frac{{OB'}}{{OB}} = \frac{{OA'}}{{OA}} = |k|\)
Vì vậy \(\;OB'{\rm{ }} = {\rm{ }}\left| k \right|.OB.\)
Mà ba điểm O, B, B’ thẳng hàng và B, B’ nằm khác phía đối với O.
Suy ra \(\overrightarrow {OB'} = k\overrightarrow {OB} \)
Do đó \({V_{\left( {O,{\rm{ }}k} \right)}}\left( B \right) = B'.\)
Vậy phép vị tự tâm O, tỉ số \(k = - \frac{{OA'}}{{OA}}\) biến vật AB thành ảnh A’B’.
Bài 17 trang 42 Chuyên đề học tập Toán 11 Chân trời sáng tạo thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này yêu cầu học sinh phải hiểu rõ các khái niệm về đạo hàm, quy tắc tính đạo hàm và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.
Bài 17 thường bao gồm các dạng bài tập sau:
Để giúp các em hiểu rõ hơn về cách giải bài 17 trang 42, chúng ta sẽ đi vào phân tích từng dạng bài tập cụ thể.
Để tính đạo hàm của hàm số, các em cần áp dụng các quy tắc tính đạo hàm đã học, bao gồm:
Ví dụ: Cho hàm số y = x2 + 2x - 1. Tính đạo hàm y’.
Lời giải: y’ = 2x + 2
Để tìm cực trị của hàm số, các em cần thực hiện các bước sau:
Ví dụ: Tìm cực trị của hàm số y = x3 - 3x2 + 2.
Lời giải:
Để khảo sát sự biến thiên của hàm số, các em cần thực hiện các bước sau:
Các bài toán tối ưu thường yêu cầu tìm giá trị lớn nhất hoặc nhỏ nhất của một hàm số trên một khoảng xác định. Để giải các bài toán này, các em cần thực hiện các bước sau:
Khi giải bài tập về đạo hàm, các em cần lưu ý những điều sau:
Hy vọng rằng với lời giải chi tiết và hướng dẫn cụ thể trên đây, các em học sinh sẽ tự tin hơn trong việc giải bài 17 trang 42 Chuyên đề học tập Toán 11 Chân trời sáng tạo. Chúc các em học tập tốt!