Logo Header
  1. Môn Toán
  2. Giải bài 8 trang 68 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Giải bài 8 trang 68 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Giải bài 8 trang 68 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập Toán 11 Chuyên đề học tập. Bài viết này sẽ hướng dẫn bạn giải quyết bài 8 trang 68 một cách nhanh chóng và hiệu quả.

Chúng tôi cam kết mang đến cho bạn những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong các kỳ thi.

Mỗi đồ thị trong Hình 6 có chu trình Hamilton không? Nếu có hãy chỉ ra một chu trình như vậy.

Đề bài

Mỗi đồ thị trong Hình 6 có chu trình Hamilton không? Nếu có hãy chỉ ra một chu trình như vậy. Nếu không, đồ thị có đường đi Hamilton không? Nếu có, hãy chỉ ra một đường đi như vậy.

Giải bài 8 trang 68 Chuyên đề học tập Toán 11 Chân trời sáng tạo 1

Phương pháp giải - Xem chi tiếtGiải bài 8 trang 68 Chuyên đề học tập Toán 11 Chân trời sáng tạo 2

Trong đồ thị, một đường đi được gọi là đường đi Hamilton nếu đường đi đó đi qua tất cả các đỉnh của đồ thị, mỗi đỉnh đúng 1 lần.

Nếu chu trình là đường đi Hamilton thì chu trình đó được gọi là chu trình Hamilton.

Lời giải chi tiết

a) Đồ thị G:

Đồ thị G có các đỉnh A, B, I có bậc 2.

Suy ra chu trình Hamilton h (nếu có) phải đi qua các cạnh AB, AD, BC, EI, FI.

Do đó ta có một chu trình Hamilton h của đồ thị G là: CBADEIFC.

b) Đồ thị H:

Đồ thị H có các đỉnh M, N, P có bậc 2.

Suy ra chu trình Hamilton h (nếu có) phải đi qua các cạnh MA, MB, NA, NB, PA, PB.

Ta thấy chu trình Hamilton h (nếu có) đi qua ba cạnh MA, NA, PA nối với đỉnh A nên chu trình Hamilton h không tồn tại.

Đồ thị H có đường đi Hamilton, chẳng hạn MANBP.

Vậy đồ thị G không có chu trình Hamilton và cũng không có đường đi Hamilton; đồ thị H không có chu trình Hamilton và có đường đi Hamilton.

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 8 trang 68 Chuyên đề học tập Toán 11 Chân trời sáng tạo – hành trang không thể thiếu trong chuyên mục Học tốt Toán lớp 11 trên nền tảng môn toán. Bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 8 trang 68 Chuyên đề học tập Toán 11 Chân trời sáng tạo: Tổng quan

Bài 8 trang 68 Chuyên đề học tập Toán 11 Chân trời sáng tạo thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm về đạo hàm, quy tắc tính đạo hàm và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.

Nội dung bài 8 trang 68 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Bài 8 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Tính đạo hàm của hàm số hợp.
  • Dạng 2: Tìm đạo hàm cấp hai của hàm số.
  • Dạng 3: Ứng dụng đạo hàm để xét tính đơn điệu của hàm số.
  • Dạng 4: Ứng dụng đạo hàm để tìm cực trị của hàm số.
  • Dạng 5: Giải các bài toán thực tế liên quan đến đạo hàm.

Lời giải chi tiết bài 8 trang 68 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Để giúp bạn hiểu rõ hơn về cách giải bài 8 trang 68, chúng tôi sẽ cung cấp lời giải chi tiết cho từng dạng bài tập. Dưới đây là một ví dụ minh họa:

Ví dụ minh họa:

Cho hàm số y = f(x) = (x2 + 1)3. Hãy tính đạo hàm f'(x).

Lời giải:

Áp dụng quy tắc đạo hàm hàm hợp, ta có:

f'(x) = 3(x2 + 1)2 * (2x) = 6x(x2 + 1)2

Các bước giải bài tập đạo hàm hiệu quả

  1. Bước 1: Xác định đúng công thức đạo hàm cần sử dụng.
  2. Bước 2: Áp dụng quy tắc đạo hàm một cách chính xác.
  3. Bước 3: Rút gọn biểu thức đạo hàm.
  4. Bước 4: Kiểm tra lại kết quả.

Mẹo học tốt môn Toán 11

Để học tốt môn Toán 11, bạn nên:

  • Nắm vững kiến thức cơ bản: Đảm bảo bạn hiểu rõ các khái niệm, định lý và công thức toán học.
  • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để rèn luyện kỹ năng và làm quen với các dạng bài tập.
  • Tìm kiếm sự giúp đỡ khi cần thiết: Đừng ngần ngại hỏi thầy cô, bạn bè hoặc tìm kiếm trên internet nếu bạn gặp khó khăn.
  • Sử dụng các tài liệu học tập bổ trợ: Sách giáo khoa, sách bài tập, tài liệu trực tuyến, video bài giảng,...

Ứng dụng của đạo hàm trong thực tế

Đạo hàm có rất nhiều ứng dụng trong thực tế, ví dụ như:

  • Vật lý: Tính vận tốc, gia tốc của vật chuyển động.
  • Kinh tế: Tính chi phí biên, doanh thu biên, lợi nhuận biên.
  • Kỹ thuật: Tối ưu hóa thiết kế, điều khiển hệ thống.

Tổng kết

Bài 8 trang 68 Chuyên đề học tập Toán 11 Chân trời sáng tạo là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Hy vọng với lời giải chi tiết và các lời khuyên hữu ích trên đây, bạn sẽ tự tin hơn trong việc giải quyết bài tập này và đạt kết quả tốt trong môn Toán 11.

Công thứcMô tả
(u + v)'Đạo hàm của tổng hai hàm số
(u - v)'Đạo hàm của hiệu hai hàm số
(u * v)'Đạo hàm của tích hai hàm số

Tài liệu, đề thi và đáp án Toán 11