Logo Header
  1. Môn Toán
  2. Giải bài 18 trang 42 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Giải bài 18 trang 42 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Giải bài 18 trang 42 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11 Chân trời sáng tạo. Bài viết này sẽ hướng dẫn bạn từng bước giải bài 18 trang 42, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất, giúp bạn tiết kiệm thời gian và đạt kết quả tốt nhất.

Cho tam giác ABC có góc B, góc C đều là góc nhọn.

Đề bài

Cho tam giác ABC có góc B, góc C đều là góc nhọn. Nêu cách vẽ hình chữ nhật DEFG có đỉnh D, đỉnh E thuộc cạnh BC, đỉnh F, đỉnh G thuộc cạnh AC, AB và có EF = 2DE.

Phương pháp giải - Xem chi tiếtGiải bài 18 trang 42 Chuyên đề học tập Toán 11 Chân trời sáng tạo 1

Dựa vào phép vị tự để làm: Cho điểm O cố định và một số thực k, \(k \ne 0\). Phép biến hình biến mỗi điểm M thành điểm M’ sao cho \(\overrightarrow {OM'} = k\overrightarrow {OM} \) được gọi là phép vị tự tâm O tỉ số k, kí hiệu \({V_{(O,k)}}\). O được gọi là tâm vị tự, k gọi là tỉ số vị tự.

Lời giải chi tiết

Giải bài 18 trang 42 Chuyên đề học tập Toán 11 Chân trời sáng tạo 2

 Phân tích:

Lấy điểm G’ bất kì trên AB.

Dựng hình chữ nhật D’E’F’G’ có \(\;E'F'{\rm{ }} = {\rm{ }}2D'E'\) và hai đỉnh D’, E’ thuộc BC.

Đường thẳng BF’ cắt AC tại F.

Do D’E’F’G’ là hình chữ nhật nên \(G'D'{\rm{ }} \bot {\rm{ }}D'E'\) hay \(G'D'{\rm{ }} \bot {\rm{ }}BC.\)

Mà GD ⊥ BC (do DEFG là hình chữ nhật).

Nên G’D’ // GD.

Chứng minh tương tự, ta được E’F’ // EF.

Vì D’E’F’G’ là hình chữ nhật nên G’F’ // D’E’ hay G’F’ // BC.

Mà GF // BC (do DEFG là hình chữ nhật).

Suy ra GF // G’F’.

Áp dụng định lí Thales, ta được \(\frac{{BG}}{{BG'}} = \frac{{BF}}{{BF'}}\)

Suy ra \(BF' = \frac{{BG'}}{{BG}}.BF\)

Mà \(\overrightarrow {BF'} ,\overrightarrow {BF} \) cùng hướng.

Do đó \(\overrightarrow {BF'} = \frac{{BG'}}{{BG}}.\overrightarrow {BF} \)

Vì vậy \({\rm{F'}} = {V_{\left( {B,\frac{{BG'}}{{BG}}} \right)}}\left( F \right)\,\,(1)\)

Chứng minh tương tự, ta được \(D' = {V_{\left( {B,\frac{{BG'}}{{BG}}} \right)}}\left( D \right)\) và \(E' = {V_{\left( {B,\frac{{BG'}}{{BG}}} \right)}}\left( E \right)\,\,(2)\)

Lại có \(G' = {V_{\left( {B,\frac{{BG'}}{{BG}}} \right)}}\left( G \right)\,\,(3)\)

Từ (1), (2), (3), ta thu được \({V_{\left( {B,\frac{{BG'}}{{BG}}} \right)}}\) biến hình chữ nhật D’E’F’G’ thành hình chữ nhật DEFG. Từ đó, ta suy ra cách dựng hình chữ nhật DEFG.

 Cách dựng:

Lấy điểm G’ tùy ý trên AB.

Dựng hình chữ nhật D’E’F’G’ có E’F’ = 2D’E’, hai đỉnh D’, E’ nằm trên BC.

Đường thẳng BF’ cắt AC tại F.

Đường thẳng qua F song song với BC cắt AB tại G.

Gọi D, E lần lượt là hình chiếu của G, F lên BC.

Vậy ta đã dựng xong hình chữ nhật DEFG.

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 18 trang 42 Chuyên đề học tập Toán 11 Chân trời sáng tạo – hành trang không thể thiếu trong chuyên mục Sách bài tập Toán 11 trên nền tảng môn toán. Bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 18 trang 42 Chuyên đề học tập Toán 11 Chân trời sáng tạo: Hướng dẫn chi tiết

Bài 18 trang 42 Chuyên đề học tập Toán 11 Chân trời sáng tạo thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về đạo hàm để giải quyết các bài toán thực tế. Để giải quyết bài toán này một cách hiệu quả, chúng ta cần nắm vững các khái niệm cơ bản về đạo hàm, quy tắc tính đạo hàm và các ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.

Phân tích đề bài

Trước khi bắt đầu giải bài, chúng ta cần đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Bài 18 trang 42 thường yêu cầu học sinh:

  • Tính đạo hàm của hàm số.
  • Tìm cực trị của hàm số.
  • Xác định khoảng đơn điệu của hàm số.
  • Giải các bài toán ứng dụng liên quan đến đạo hàm.

Lời giải chi tiết bài 18 trang 42

Để cung cấp lời giải chi tiết, chúng ta cần biết chính xác nội dung của bài 18. Tuy nhiên, dựa trên cấu trúc chung của Chuyên đề học tập Toán 11 Chân trời sáng tạo, chúng ta có thể đưa ra một ví dụ minh họa về cách giải một bài toán tương tự:

Ví dụ: Cho hàm số y = x3 - 3x2 + 2. Hãy tìm cực trị của hàm số.

  1. Tính đạo hàm bậc nhất: y' = 3x2 - 6x
  2. Tìm điểm dừng: Giải phương trình y' = 0, ta được x = 0 hoặc x = 2.
  3. Khảo sát dấu của đạo hàm bậc nhất:
    • Với x < 0, y' > 0, hàm số đồng biến.
    • Với 0 < x < 2, y' < 0, hàm số nghịch biến.
    • Với x > 2, y' > 0, hàm số đồng biến.
  4. Kết luận: Hàm số đạt cực đại tại x = 0, giá trị cực đại là y = 2. Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là y = -2.

Các lưu ý khi giải bài tập về đạo hàm

Để giải các bài tập về đạo hàm một cách hiệu quả, bạn cần lưu ý những điều sau:

  • Nắm vững các công thức tính đạo hàm cơ bản.
  • Sử dụng quy tắc tính đạo hàm một cách linh hoạt.
  • Kiểm tra lại kết quả sau khi giải bài.
  • Luyện tập thường xuyên để nâng cao kỹ năng giải bài.

Ứng dụng của đạo hàm trong thực tế

Đạo hàm có rất nhiều ứng dụng trong thực tế, ví dụ như:

  • Tính vận tốc và gia tốc trong vật lý.
  • Tìm điểm tối ưu trong kinh tế.
  • Dự báo xu hướng trong tài chính.
  • Phân tích dữ liệu trong khoa học.

Tổng kết

Bài 18 trang 42 Chuyên đề học tập Toán 11 Chân trời sáng tạo là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm và rèn luyện kỹ năng giải bài tập. Hy vọng với hướng dẫn chi tiết này, bạn sẽ tự tin hơn trong quá trình học tập và đạt kết quả tốt nhất.

Tài liệu, đề thi và đáp án Toán 11