Logo Header
  1. Môn Toán
  2. Giải bài 12 trang 41 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Giải bài 12 trang 41 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Giải bài 12 trang 41 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Chào mừng các em học sinh đến với lời giải chi tiết bài 12 trang 41 Chuyên đề học tập Toán 11 Chân trời sáng tạo. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập hiệu quả, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán.

Cho đường thẳng \(d:{\rm{ }}x{\rm{ }} + {\rm{ }}y{\rm{ }} + {\rm{ }}2{\rm{ }} = {\rm{ }}0,\;\) đường tròn \(\left( C \right):{\rm{ }}{x^2}\; + {\rm{ }}{y^2}\;-{\rm{ }}4x{\rm{ }} + {\rm{ }}8y{\rm{ }}-{\rm{ }}5{\rm{ }} = {\rm{ }}0.\)

Đề bài

Cho đường thẳng \(d:{\rm{ }}x{\rm{ }} + {\rm{ }}y{\rm{ }} + {\rm{ }}2{\rm{ }} = {\rm{ }}0,\;\) đường tròn \(\left( C \right):{\rm{ }}{x^2}\; + {\rm{ }}{y^2}\;-{\rm{ }}4x{\rm{ }} + {\rm{ }}8y{\rm{ }}-{\rm{ }}5{\rm{ }} = {\rm{ }}0.\)

a) Tìm ảnh của d qua phép đối xứng trục Ox.

b) Tìm ảnh của (C) qua phép đối xứng trục Oy.

Phương pháp giải - Xem chi tiếtGiải bài 12 trang 41 Chuyên đề học tập Toán 11 Chân trời sáng tạo 1

Nếu \(M' = {Đ_{Ox}}(M)\) thì biểu thức tọa độ \(\left\{ \begin{array}{l}{x_{M'}} = {x_M}\\{y_{M'}} = - {y_M}\end{array} \right.\)

Nếu\(M' = {Đ_{Oy}}(M)\) thì biểu thức tọa độ \(\left\{ \begin{array}{l}{x_{M'}} = - {x_M}\\{y_{M'}} = {y_M}\end{array} \right.\)

Lời giải chi tiết

a) Chọn điểm \(M\left( {-1;{\rm{ }}-1} \right) \in d:{\rm{ }}x{\rm{ }} + {\rm{ }}y{\rm{ }} + {\rm{ }}2{\rm{ }} = {\rm{ }}0.\)

Ta đặt \(M'{\rm{ }} = {\rm{ }}{Đ_{Ox}}\left( M \right).\)

Suy ra Ox là đường trung trực của đoạn MM’ hay M, M’ đối xứng nhau qua Ox.

Do đó hai điểm M và M’ có cùng hoành độ và có tung độ đối nhau.

Vì vậy tọa độ

Gọi N là giao điểm của d và Ox, khi đó \({y_N}\; = {\rm{ }}0,\) suy ra \({x_N}\; = {\rm{ }}-2.\)Do đó \(N\left( {-2;{\rm{ }}0} \right).\)

Gọi d’ là ảnh của d qua phép đối xứng trục Ox, khi đó đường thẳng d’ đi qua hai điểm \(M'\left( {-1;{\rm{ }}1} \right)\) và \(N\left( {-2;{\rm{ }}0} \right).\)

Ta có: \(\overrightarrow {M'N} = \left( { - 1; - 1} \right) \Rightarrow {\vec n_{d'}} = \left( {1; - 1} \right)\)

Đường thẳng d’ đi qua điểm N(–2; 0) và có vectơ pháp tuyến \({\vec n_{d'}} = \left( {1; - 1} \right)\) nên có phương trình là:

\(1.\left( {x{\rm{ }} + {\rm{ }}2} \right){\rm{ }}-{\rm{ }}1.\left( {y{\rm{ }}-{\rm{ }}0} \right){\rm{ }} = {\rm{ }}0 \Leftrightarrow x{\rm{ }}-{\rm{ }}y{\rm{ }} + {\rm{ }}2{\rm{ }} = {\rm{ }}0.\)

b) Đường tròn \(\left( C \right):{\rm{ }}{x^2}\; + {\rm{ }}{y^2}\;-{\rm{ }}4x{\rm{ }} + {\rm{ }}8y{\rm{ }}-{\rm{ }}5{\rm{ }} = {\rm{ }}0\) có tâm I(2; –4), bán kính \(R = \sqrt {{2^2} + {{\left( { - 4} \right)}^2} - \left( { - 5} \right)} = 5\)

Gọi đường tròn (C’) là ảnh của đường tròn (C) qua \({Đ_{Oy}}.\)

Suy ra (C’) là đường tròn có tâm là ảnh của I qua \({Đ_{Oy}}.\) và có bán kính \(R'{\rm{ }} = {\rm{ }}R{\rm{ }} = {\rm{ }}5.\)

Ta đặt \(I'{\rm{ }} = {\rm{ }}{Đ_{Oy}}\left( I \right).\)

Suy ra Oy là đường trung trực của đoạn II’ hay I và I’ đối xứng nhau qua Oy

Do đó hai điểm I và I’ có cùng tung độ và có hoành độ đối nhau.

Vì vậy tọa độ I’(–2; –4).

Vậy phương trình đường tròn (C’) là ảnh của (C) qua \({Đ_{Oy}}.\) là: \({\left( {x{\rm{ }} + {\rm{ }}2} \right)^2}\; + {\rm{ }}{\left( {y{\rm{ }} + {\rm{ }}4} \right)^2}\; = {\rm{ }}25.\)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 12 trang 41 Chuyên đề học tập Toán 11 Chân trời sáng tạo – hành trang không thể thiếu trong chuyên mục Học tốt Toán lớp 11 trên nền tảng soạn toán. Bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 12 trang 41 Chuyên đề học tập Toán 11 Chân trời sáng tạo: Tổng quan

Bài 12 trang 41 Chuyên đề học tập Toán 11 Chân trời sáng tạo thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này yêu cầu học sinh phải hiểu rõ các khái niệm về đạo hàm, quy tắc tính đạo hàm và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.

Nội dung bài tập

Bài 12 thường bao gồm các dạng bài tập sau:

  • Bài tập 1: Tính đạo hàm của hàm số.
  • Bài tập 2: Tìm cực trị của hàm số.
  • Bài tập 3: Khảo sát sự biến thiên của hàm số.
  • Bài tập 4: Ứng dụng đạo hàm để giải các bài toán tối ưu.

Phương pháp giải bài tập

Để giải quyết bài 12 trang 41 Chuyên đề học tập Toán 11 Chân trời sáng tạo một cách hiệu quả, các em cần nắm vững các bước sau:

  1. Bước 1: Xác định đúng công thức đạo hàm cần sử dụng.
  2. Bước 2: Tính đạo hàm của hàm số một cách chính xác.
  3. Bước 3: Giải phương trình đạo hàm bằng 0 để tìm các điểm cực trị.
  4. Bước 4: Xét dấu đạo hàm để xác định khoảng đơn điệu của hàm số.
  5. Bước 5: Sử dụng các kiến thức về cực trị và khoảng đơn điệu để giải quyết các bài toán tối ưu.

Ví dụ minh họa

Ví dụ: Cho hàm số y = x3 - 3x2 + 2. Hãy tìm cực trị của hàm số.

Giải:

  1. Tính đạo hàm: y' = 3x2 - 6x
  2. Giải phương trình y' = 0: 3x2 - 6x = 0 => x = 0 hoặc x = 2
  3. Xét dấu đạo hàm:
    • Với x < 0, y' > 0 => Hàm số đồng biến
    • Với 0 < x < 2, y' < 0 => Hàm số nghịch biến
    • Với x > 2, y' > 0 => Hàm số đồng biến
  4. Kết luận: Hàm số đạt cực đại tại x = 0, ymax = 2 và đạt cực tiểu tại x = 2, ymin = -2

Lưu ý quan trọng

Khi giải bài tập về đạo hàm, các em cần chú ý:

  • Nắm vững các công thức đạo hàm cơ bản.
  • Tính đạo hàm một cách cẩn thận, tránh sai sót.
  • Kiểm tra lại kết quả sau khi giải xong.
  • Luyện tập thường xuyên để nâng cao kỹ năng giải bài tập.

Tài liệu tham khảo

Để học tập và ôn luyện kiến thức về đạo hàm, các em có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 11 Chân trời sáng tạo
  • Sách bài tập Toán 11 Chân trời sáng tạo
  • Các trang web học toán online uy tín như giaitoan.edu.vn

Kết luận

Hy vọng với những hướng dẫn chi tiết và ví dụ minh họa trên, các em sẽ tự tin hơn trong việc giải bài 12 trang 41 Chuyên đề học tập Toán 11 Chân trời sáng tạo. Chúc các em học tập tốt và đạt kết quả cao trong môn Toán!

Tài liệu, đề thi và đáp án Toán 11