Chào mừng các em học sinh đến với lời giải chi tiết bài 12 trang 41 Chuyên đề học tập Toán 11 Chân trời sáng tạo. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập hiệu quả, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán.
Cho đường thẳng \(d:{\rm{ }}x{\rm{ }} + {\rm{ }}y{\rm{ }} + {\rm{ }}2{\rm{ }} = {\rm{ }}0,\;\) đường tròn \(\left( C \right):{\rm{ }}{x^2}\; + {\rm{ }}{y^2}\;-{\rm{ }}4x{\rm{ }} + {\rm{ }}8y{\rm{ }}-{\rm{ }}5{\rm{ }} = {\rm{ }}0.\)
Đề bài
Cho đường thẳng \(d:{\rm{ }}x{\rm{ }} + {\rm{ }}y{\rm{ }} + {\rm{ }}2{\rm{ }} = {\rm{ }}0,\;\) đường tròn \(\left( C \right):{\rm{ }}{x^2}\; + {\rm{ }}{y^2}\;-{\rm{ }}4x{\rm{ }} + {\rm{ }}8y{\rm{ }}-{\rm{ }}5{\rm{ }} = {\rm{ }}0.\)
a) Tìm ảnh của d qua phép đối xứng trục Ox.
b) Tìm ảnh của (C) qua phép đối xứng trục Oy.
Phương pháp giải - Xem chi tiết
Nếu \(M' = {Đ_{Ox}}(M)\) thì biểu thức tọa độ \(\left\{ \begin{array}{l}{x_{M'}} = {x_M}\\{y_{M'}} = - {y_M}\end{array} \right.\)
Nếu\(M' = {Đ_{Oy}}(M)\) thì biểu thức tọa độ \(\left\{ \begin{array}{l}{x_{M'}} = - {x_M}\\{y_{M'}} = {y_M}\end{array} \right.\)
Lời giải chi tiết
a) Chọn điểm \(M\left( {-1;{\rm{ }}-1} \right) \in d:{\rm{ }}x{\rm{ }} + {\rm{ }}y{\rm{ }} + {\rm{ }}2{\rm{ }} = {\rm{ }}0.\)
Ta đặt \(M'{\rm{ }} = {\rm{ }}{Đ_{Ox}}\left( M \right).\)
Suy ra Ox là đường trung trực của đoạn MM’ hay M, M’ đối xứng nhau qua Ox.
Do đó hai điểm M và M’ có cùng hoành độ và có tung độ đối nhau.
Vì vậy tọa độ
Gọi N là giao điểm của d và Ox, khi đó \({y_N}\; = {\rm{ }}0,\) suy ra \({x_N}\; = {\rm{ }}-2.\)Do đó \(N\left( {-2;{\rm{ }}0} \right).\)
Gọi d’ là ảnh của d qua phép đối xứng trục Ox, khi đó đường thẳng d’ đi qua hai điểm \(M'\left( {-1;{\rm{ }}1} \right)\) và \(N\left( {-2;{\rm{ }}0} \right).\)
Ta có: \(\overrightarrow {M'N} = \left( { - 1; - 1} \right) \Rightarrow {\vec n_{d'}} = \left( {1; - 1} \right)\)
Đường thẳng d’ đi qua điểm N(–2; 0) và có vectơ pháp tuyến \({\vec n_{d'}} = \left( {1; - 1} \right)\) nên có phương trình là:
\(1.\left( {x{\rm{ }} + {\rm{ }}2} \right){\rm{ }}-{\rm{ }}1.\left( {y{\rm{ }}-{\rm{ }}0} \right){\rm{ }} = {\rm{ }}0 \Leftrightarrow x{\rm{ }}-{\rm{ }}y{\rm{ }} + {\rm{ }}2{\rm{ }} = {\rm{ }}0.\)
b) Đường tròn \(\left( C \right):{\rm{ }}{x^2}\; + {\rm{ }}{y^2}\;-{\rm{ }}4x{\rm{ }} + {\rm{ }}8y{\rm{ }}-{\rm{ }}5{\rm{ }} = {\rm{ }}0\) có tâm I(2; –4), bán kính \(R = \sqrt {{2^2} + {{\left( { - 4} \right)}^2} - \left( { - 5} \right)} = 5\)
Gọi đường tròn (C’) là ảnh của đường tròn (C) qua \({Đ_{Oy}}.\)
Suy ra (C’) là đường tròn có tâm là ảnh của I qua \({Đ_{Oy}}.\) và có bán kính \(R'{\rm{ }} = {\rm{ }}R{\rm{ }} = {\rm{ }}5.\)
Ta đặt \(I'{\rm{ }} = {\rm{ }}{Đ_{Oy}}\left( I \right).\)
Suy ra Oy là đường trung trực của đoạn II’ hay I và I’ đối xứng nhau qua Oy
Do đó hai điểm I và I’ có cùng tung độ và có hoành độ đối nhau.
Vì vậy tọa độ I’(–2; –4).
Vậy phương trình đường tròn (C’) là ảnh của (C) qua \({Đ_{Oy}}.\) là: \({\left( {x{\rm{ }} + {\rm{ }}2} \right)^2}\; + {\rm{ }}{\left( {y{\rm{ }} + {\rm{ }}4} \right)^2}\; = {\rm{ }}25.\)
Bài 12 trang 41 Chuyên đề học tập Toán 11 Chân trời sáng tạo thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này yêu cầu học sinh phải hiểu rõ các khái niệm về đạo hàm, quy tắc tính đạo hàm và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.
Bài 12 thường bao gồm các dạng bài tập sau:
Để giải quyết bài 12 trang 41 Chuyên đề học tập Toán 11 Chân trời sáng tạo một cách hiệu quả, các em cần nắm vững các bước sau:
Ví dụ: Cho hàm số y = x3 - 3x2 + 2. Hãy tìm cực trị của hàm số.
Giải:
Khi giải bài tập về đạo hàm, các em cần chú ý:
Để học tập và ôn luyện kiến thức về đạo hàm, các em có thể tham khảo các tài liệu sau:
Hy vọng với những hướng dẫn chi tiết và ví dụ minh họa trên, các em sẽ tự tin hơn trong việc giải bài 12 trang 41 Chuyên đề học tập Toán 11 Chân trời sáng tạo. Chúc các em học tập tốt và đạt kết quả cao trong môn Toán!