Bài 5 trang 24 Chuyên đề học tập Toán 11 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Bài tập này thường yêu cầu học sinh phải vận dụng kiến thức đã học để tìm đạo hàm, xét dấu đạo hàm và xác định các điểm cực trị của hàm số.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 5 trang 24 Chuyên đề học tập Toán 11 Chân trời sáng tạo, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Trong Hình 12, tìm phép đối xứng biến hình mũi tên (A) thành hình mũi tên (B) và tìm phép đối xứng biến hình mũi tên (B) thành hình mũi tên (C).
Đề bài
Trong Hình 12, tìm phép đối xứng biến hình mũi tên (A) thành hình mũi tên (B) và tìm phép đối xứng biến hình mũi tên (B) thành hình mũi tên (C).
Phương pháp giải - Xem chi tiết
Quan sát hình 12 và dựa vào phép đối xứng tâm để làm.
Điểm O được gọi là tâm đối xứng của hình H nếu phép đối xứng tâm O biến hình H thành chính nó.
Lời giải chi tiết
⦁ Gọi P, Q là hai điểm nằm trên cạnh của mũi tên (A) như hình vẽ.
Lấy O là trung điểm của PQ.
Gọi E là một điểm trên hình mũi tên (A).
Lấy điểm E’ là ảnh của E qua
Khi đó O là trung điểm của EE’, E’ một điểm trên hình mũi tên (B) có vị trí tương ứng với điểm E trên hình mũi tên (A).
Tương tự như vậy, với mỗi điểm M bất kì trên hình mũi tên (A), ta lấy điểm M’ là ảnh của M qua thì ta được tập hợp các điểm M’ tạo thành hình mũi tên (B).
Vậy phép đối xứng tâm O biến hình mũi tên (A) thành hình mũi tên (B), với O là trung điểm của PQ trên hình mũi tên (A) (như hình vẽ).
⦁ Gọi H, K là hai điểm nằm trên cạnh của mũi tên (B) như hình vẽ.
Lấy I là trung điểm của HK.
Chứng minh tương tự như trên, ta thu được phép đối xứng tâm I biến hình mũi tên (B) thành hình mũi tên (C), với I là trung điểm của HK trên hình mũi tên (B) (như hình vẽ).
Bài 5 trang 24 thuộc Chuyên đề học tập Toán 11 Chân trời sáng tạo tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế liên quan đến sự biến thiên của hàm số. Cụ thể, bài toán yêu cầu học sinh phân tích hàm số, tìm đạo hàm, xác định các điểm cực trị và khoảng đơn điệu của hàm số. Việc nắm vững các khái niệm và kỹ năng này là nền tảng quan trọng cho việc học tập các kiến thức nâng cao hơn trong chương trình Toán 11.
Trước khi đi vào giải chi tiết, chúng ta cần phân tích kỹ đề bài để xác định rõ yêu cầu và các thông tin đã cho. Đề bài thường cung cấp một hàm số cụ thể và yêu cầu học sinh thực hiện các bước sau:
Để minh họa, chúng ta sẽ xét một ví dụ cụ thể. Giả sử hàm số được cho là: f(x) = x3 - 3x2 + 2.
f'(x) = 3x2 - 6x
Hàm số f(x) = x3 - 3x2 + 2 là một hàm đa thức, do đó tập xác định của hàm số là R (tập hợp tất cả các số thực).
Để tìm các điểm tới hạn, ta giải phương trình f'(x) = 0:
3x2 - 6x = 0
3x(x - 2) = 0
Vậy, x = 0 hoặc x = 2 là các điểm tới hạn.
Ta xét các khoảng sau:
Dựa vào bảng xét dấu của đạo hàm, ta có:
Khi giải các bài tập về đạo hàm và khảo sát hàm số, cần lưu ý những điều sau:
Đạo hàm không chỉ là một công cụ quan trọng trong toán học mà còn có nhiều ứng dụng thực tế trong các lĩnh vực khác như vật lý, kinh tế, kỹ thuật,... Ví dụ, đạo hàm có thể được sử dụng để tính vận tốc, gia tốc của một vật thể chuyển động, hoặc để tối ưu hóa lợi nhuận của một doanh nghiệp.
Bài 5 trang 24 Chuyên đề học tập Toán 11 Chân trời sáng tạo là một bài tập điển hình để rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm. Hy vọng với lời giải chi tiết và những lưu ý trên, các em học sinh sẽ tự tin hơn khi giải các bài tập tương tự và nắm vững kiến thức về đạo hàm.