Bài 2 trang 19 Chuyên đề học tập Toán 11 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về dãy số, cấp số cộng và cấp số nhân. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 2 trang 19 Chuyên đề học tập Toán 11 Chân trời sáng tạo, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.
Trong mặt phẳng tọa độ Oxy, cho đường thẳng d có phương trình \(x{\rm{ }}-{\rm{ }}y{\rm{ }} = {\rm{ }}0\) và cho điểm \(M({x_0};{\rm{ }}{y_0}).\)
Đề bài
Trong mặt phẳng tọa độ Oxy, cho đường thẳng d có phương trình \(x{\rm{ }}-{\rm{ }}y{\rm{ }} = {\rm{ }}0\) và cho điểm \(M({x_0};{\rm{ }}{y_0}).\)Tìm tọa độ điểm \(M'{\rm{ }} = {\rm{ }}{Đ_d}\left( M \right).\)
Phương pháp giải - Xem chi tiết
Xét hai trường hợp: \(M{\rm{ }} \in {\rm{ }}d\) hoặc \(M \notin d.\)
Lời giải chi tiết
Trường hợp 1: \(M{\rm{ }} \in {\rm{ }}d\)
Khi đó \(M{\rm{ }} = {\rm{ }}{Đ_d}\left( M \right).\)
Vì vậy \(M' \equiv M.\)
Do đó \(M'({x_0};{\rm{ }}{y_0}).\)
Trường hợp 2: \(M \notin d.\)
Theo đề, ta có \(M'{\rm{ }} = {\rm{ }}{Đ_d}\left( M \right).\)
Suy ra d là đường trung trực của đoạn MM’, do đó \(d \bot MM'.\)
Đường thẳng d có vectơ pháp tuyến \({\vec n_d} = \left( {1; - 1} \right)\)
Vì vậy MM’ nhận \({\vec n_d} = \left( {1; - 1} \right)\)làm vectơ chỉ phương.
Suy ra phương trình MM’: \(\left\{ {\begin{array}{*{20}{l}}{{\rm{x}} = {{\rm{x}}_0} + {\rm{t}}}\\{{\rm{y}} = {{\rm{y}}_0} - {\rm{t}}}\end{array}} \right.\)
Gọi H là giao điểm của MM’ và d.
Suy ra H là trung điểm MM’ và tọa độ \(H({x_0}\; + {\rm{ }}t;{\rm{ }}{y_0}\;-{\rm{ }}t).\)
Ta có \(H \in d.\)
Suy ra \({x_0}\; + {\rm{ }}t{\rm{ }}-{\rm{ }}{y_0}\; + {\rm{ }}t{\rm{ }} = {\rm{ }}0.\)
\(t = \frac{{{y_0} - {x_0}}}{2}\)
Do đó tọa độ \(H\left( {\frac{{{x_0} + {y_0}}}{2};\frac{{{x_0} + {y_0}}}{2}} \right)\)
Ta có H là trung điểm MM’.
Suy ra \(\left\{ {\begin{array}{*{20}{l}}{{{\rm{x}}_{{\rm{M'}}}} = 2{{\rm{x}}_{\rm{H}}} - {{\rm{x}}_{\rm{M}}} = 2.\frac{{{{\rm{x}}_0} + {{\rm{y}}_0}}}{2} - {{\rm{x}}_0} = {{\rm{y}}_0}}\\{{{\rm{y}}_{{\rm{M'}}}} = 2{{\rm{y}}_{\rm{H}}} - {{\rm{y}}_{\rm{M}}} = 2.\frac{{{{\rm{x}}_0} + {{\rm{y}}_0}}}{2} - {{\rm{y}}_0} = {{\rm{x}}_0}}\end{array}} \right.\)
Do đó tọa độ
Vậy \(\left\{ {\begin{array}{*{20}{l}}{{\rm{M'}}\left( {{{\rm{x}}_0};{{\rm{y}}_0}} \right)\,\,khi\,\,{\rm{M}} \in {\rm{d}}}\\{{\rm{M'}}\left( {{{\rm{y}}_0};{{\rm{x}}_0}} \right)\,\,khi\,\,{\rm{M}} \notin {\rm{d}}}\end{array}} \right.\)
Bài 2 trang 19 thuộc Chuyên đề học tập Toán 11 Chân trời sáng tạo tập trung vào việc ứng dụng các kiến thức về dãy số, đặc biệt là cấp số cộng và cấp số nhân, vào giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh xác định được loại dãy số, tìm số hạng tổng quát và tính tổng của dãy.
Trước khi đi vào giải bài, chúng ta cần phân tích kỹ đề bài để xác định rõ yêu cầu. Đề bài thường cho trước một số thông tin về dãy số, chẳng hạn như số hạng đầu, công sai hoặc công bội. Nhiệm vụ của học sinh là sử dụng các công thức và phương pháp đã học để tìm ra các giá trị còn thiếu.
Để cung cấp lời giải chi tiết, chúng ta cần biết nội dung cụ thể của bài 2 trang 19. Tuy nhiên, dựa trên kinh nghiệm giải các bài tập tương tự, chúng ta có thể đưa ra một số bước giải chung:
Giả sử bài 2 yêu cầu tìm số hạng thứ 10 của một cấp số cộng có số hạng đầu u1 = 2 và công sai d = 3. Ta có:
u10 = u1 + (10-1)d = 2 + 9 * 3 = 29
Để củng cố kiến thức, bạn có thể luyện tập thêm các bài tập tương tự trong sách giáo khoa và các tài liệu tham khảo khác. Việc luyện tập thường xuyên sẽ giúp bạn nắm vững kiến thức và tự tin giải các bài tập khó hơn.
Kiến thức về dãy số có ứng dụng rất lớn trong thực tế, chẳng hạn như trong lĩnh vực tài chính (tính lãi kép), vật lý (mô tả các hiện tượng dao động), và khoa học máy tính (thuật toán).
Bài 2 trang 19 Chuyên đề học tập Toán 11 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về dãy số. Bằng cách nắm vững các công thức và phương pháp đã học, cùng với việc luyện tập thường xuyên, các em học sinh có thể tự tin giải quyết các bài tập tương tự và ứng dụng kiến thức vào thực tế.