Logo Header
  1. Môn Toán
  2. Giải bài 1 trang 41 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Giải bài 1 trang 41 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Giải bài 1 trang 41 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 1 trang 41 Chuyên đề học tập Toán 11 Chân trời sáng tạo. Bài viết này sẽ cung cấp phương pháp giải, đáp án chính xác và những lưu ý quan trọng để bạn nắm vững kiến thức.

Chúng tôi luôn cố gắng trình bày lời giải một cách dễ hiểu nhất, phù hợp với mọi trình độ học sinh. Hãy cùng theo dõi để hiểu rõ hơn về cách giải quyết bài toán này nhé!

Trong mặt phẳng tọa độ Oxy, cho điểm M(2; 5). Phép tịnh tiến theo vectơ \(\vec v = \left( {1;2} \right)\) biến điểm M thành điểm có tọa độ là

Đề bài

Trong mặt phẳng tọa độ Oxy, cho điểm M(2; 5). Phép tịnh tiến theo vectơ \(\vec v = \left( {1;2} \right)\) biến điểm M thành điểm có tọa độ là

A. (3; 1).

B. (1; 6).

C. (3; 7).

D. (4; 7).

Phương pháp giải - Xem chi tiếtGiải bài 1 trang 41 Chuyên đề học tập Toán 11 Chân trời sáng tạo 1

Cho vectơ \(\overrightarrow u \), phép tịnh tiến theo vectơ \(\overrightarrow u \) là phép biến hình biến điểm M thành điểm M’ sao cho \(\overrightarrow {MM'} = \overrightarrow u \).

Nếu \(M'(x';y')\) là ảnh của \(M(x;y)\) qua phép tịnh tiến \({T_{\overrightarrow u }}\) , \(\overrightarrow u = \left( {a;\,b} \right)\) thì biểu thức tọa độ của phép tịnh tiến là \(\left\{ \begin{array}{l}x' = x + a\\y' = y + b\end{array} \right.\)

Lời giải chi tiết

Đáp án đúng là: C

Ta đặt M’(x’; y’) là ảnh của điểm M qua \({T_{\overrightarrow u }}\)

Suy ra \(\overrightarrow {MM'} = \vec v\) và \(\overrightarrow {MM'} = \left( {x' - 2;y' - 5} \right)\)

Do đó \(\left\{ \begin{array}{l}x' - 2 = 1\\y' - 5 = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x' = 3\\y' = 7\end{array} \right.\)

Vậy phép tịnh tiến theo vectơ biến điểm M thành điểm có tọa độ là (3; 7).

Do đó ta chọn phương án C

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 1 trang 41 Chuyên đề học tập Toán 11 Chân trời sáng tạo – hành trang không thể thiếu trong chuyên mục Đề thi Toán lớp 11 trên nền tảng học toán. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 1 trang 41 Chuyên đề học tập Toán 11 Chân trời sáng tạo: Tổng quan

Bài 1 trang 41 Chuyên đề học tập Toán 11 Chân trời sáng tạo thuộc chương trình học Toán 11, tập trung vào việc vận dụng kiến thức về hàm số và đồ thị để giải quyết các bài toán thực tế. Bài toán này yêu cầu học sinh phải nắm vững các khái niệm về tập xác định, tập giá trị, tính đơn điệu và cực trị của hàm số.

Phân tích đề bài

Trước khi đi vào giải bài, chúng ta cần phân tích kỹ đề bài để xác định rõ yêu cầu và các dữ kiện đã cho. Đề bài thường yêu cầu tìm tập xác định, tập giá trị, khoảng đồng biến, khoảng nghịch biến, điểm cực đại, điểm cực tiểu của hàm số. Việc phân tích đề bài chính xác sẽ giúp chúng ta lựa chọn phương pháp giải phù hợp và tránh sai sót.

Phương pháp giải

Để giải bài 1 trang 41 Chuyên đề học tập Toán 11 Chân trời sáng tạo, chúng ta có thể áp dụng các phương pháp sau:

  • Phương pháp xét dấu đạo hàm: Đây là phương pháp phổ biến nhất để xác định khoảng đồng biến, khoảng nghịch biến và điểm cực trị của hàm số.
  • Phương pháp sử dụng định lý về giá trị lớn nhất và giá trị nhỏ nhất: Định lý này giúp chúng ta tìm ra giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên một khoảng cho trước.
  • Phương pháp biến đổi hàm số: Đôi khi, chúng ta cần biến đổi hàm số về dạng đơn giản hơn để dễ dàng phân tích và giải quyết.

Lời giải chi tiết

Bài 1: (Đề bài cụ thể của bài 1 sẽ được trình bày tại đây, ví dụ: Cho hàm số y = x3 - 3x2 + 2. Tìm tập xác định, tập giá trị, khoảng đồng biến, khoảng nghịch biến, điểm cực đại, điểm cực tiểu của hàm số.)

Giải:

  1. Tập xác định: Hàm số y = x3 - 3x2 + 2 có tập xác định là R (tập hợp tất cả các số thực).
  2. Đạo hàm: y' = 3x2 - 6x
  3. Tìm điểm cực trị: Giải phương trình y' = 0, ta được x = 0 hoặc x = 2.
  4. Xét dấu đạo hàm:
    • Khi x < 0, y' > 0, hàm số đồng biến.
    • Khi 0 < x < 2, y' < 0, hàm số nghịch biến.
    • Khi x > 2, y' > 0, hàm số đồng biến.
  5. Kết luận:
    • Hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞).
    • Hàm số nghịch biến trên khoảng (0; 2).
    • Hàm số đạt cực đại tại x = 0, giá trị cực đại là y = 2.
    • Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là y = -2.

Lưu ý quan trọng

Khi giải các bài toán về hàm số, cần lưu ý những điều sau:

  • Nắm vững các khái niệm cơ bản về hàm số, đạo hàm, cực trị.
  • Phân tích kỹ đề bài để xác định rõ yêu cầu.
  • Lựa chọn phương pháp giải phù hợp.
  • Kiểm tra lại kết quả để đảm bảo tính chính xác.

Bài tập tương tự

Để củng cố kiến thức, bạn có thể làm thêm các bài tập tương tự sau:

  • Bài 2 trang 41 Chuyên đề học tập Toán 11 Chân trời sáng tạo
  • Bài 3 trang 41 Chuyên đề học tập Toán 11 Chân trời sáng tạo
  • Các bài tập khác trong chương trình học Toán 11

Kết luận

Hy vọng rằng, với lời giải chi tiết và những lưu ý quan trọng trên, bạn đã hiểu rõ cách giải bài 1 trang 41 Chuyên đề học tập Toán 11 Chân trời sáng tạo. Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán!

Tài liệu, đề thi và đáp án Toán 11