Logo Header
  1. Môn Toán
  2. Giải bài 6 trang 41 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Giải bài 6 trang 41 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Giải bài 6 trang 41 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 6 trang 41 Chuyên đề học tập Toán 11 Chân trời sáng tạo. Bài viết này cung cấp phương pháp giải bài tập, đáp án chính xác và giải thích rõ ràng từng bước để giúp học sinh hiểu sâu kiến thức.

Chúng tôi luôn cập nhật nhanh chóng và chính xác các lời giải bài tập Toán 11 Chân trời sáng tạo, đảm bảo hỗ trợ tối đa cho quá trình học tập của bạn.

Trong mặt phẳng tọa độ Oxy, cho điểm M(1; 1). Hỏi các điểm sau điểm nào là ảnh của M qua phép quay tâm O với góc quay 45°?

Đề bài

Trong mặt phẳng tọa độ Oxy, cho điểm M(1; 1). Hỏi các điểm sau điểm nào là ảnh của M qua phép quay tâm O với góc quay 45°?

A. \(M'\left( {1;{\rm{ }}1} \right).\)

B. \(M'\left( {1;{\rm{ }}0} \right).\)

C. \(M'\left( {\sqrt 2 ;0} \right)\)

D. \(M'\left( {0;\sqrt 2 } \right)\)

Phương pháp giải - Xem chi tiếtGiải bài 6 trang 41 Chuyên đề học tập Toán 11 Chân trời sáng tạo 1

Phép quay tâm O, góc quay \(\alpha \) : \({Q_{(O,\alpha )\;}}{\rm{[}}M\left( {x;y} \right)]{\rm{ }} = {\rm{ }}M'\left( {x';y'} \right).\;\)

Khi đó, \(\left\{ \begin{array}{l}x' = x\cos \alpha - y\sin \alpha \\y' = x\sin \alpha + y\cos \alpha \end{array} \right.\)

Lời giải chi tiết

Đáp án đúng là: D

Giải bài 6 trang 41 Chuyên đề học tập Toán 11 Chân trời sáng tạo 2

Ta có \(\overrightarrow {OM} = \left( {1;1} \right)\). Suy ra \(OM = \sqrt 2 \)

Vẽ đường tròn (C) tâm O, bán kính OM.

Ta có \({Q_{(O,{\rm{ }}45^\circ )}}\) biến điểm M khác O thành điểm M’ sao cho \(OM' = OM = \sqrt 2 \) và \(\left( {OM',{\rm{ }}OM} \right){\rm{ }} = {\rm{ }}45^\circ \;\) hay \(\widehat {MOM'} = 45^\circ \)

Kẻ \(MH \bot Ox\) tại H.

\(\Delta \) OMH vuông tại H: \(\cos \widehat {MOH} = \frac{{OH}}{{OM}} = \frac{1}{{\sqrt 2 }}\)

Suy ra \(\widehat {MOH} = 45^\circ \)

Ta có \(\widehat {HOM'} = \widehat {HOM} + \widehat {MOM'} = 45^\circ + 45^\circ = 90^\circ \)

Suy ra \(M' \in Oy\) nên \({x_{M'}}\; = {\rm{ }}0.\)

Mà \(OM' = \sqrt 2 \) (chứng minh trên) nên \({y_{M'}} = \sqrt 2 \)

Vậy tọa độ \(M'\left( {0;\sqrt 2 } \right)\)

Do đó ta chọn phương án D.

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 6 trang 41 Chuyên đề học tập Toán 11 Chân trời sáng tạo – hành trang không thể thiếu trong chuyên mục Bài tập Toán lớp 11 trên nền tảng toán math. Bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 6 trang 41 Chuyên đề học tập Toán 11 Chân trời sáng tạo: Tổng quan

Bài 6 trang 41 Chuyên đề học tập Toán 11 Chân trời sáng tạo thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này yêu cầu học sinh nắm vững các khái niệm về đạo hàm, quy tắc tính đạo hàm và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.

Nội dung bài tập

Bài 6 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số.
  • Tìm đạo hàm cấp hai của hàm số.
  • Xác định khoảng đơn điệu của hàm số.
  • Tìm cực trị của hàm số.
  • Giải các bài toán liên quan đến ứng dụng đạo hàm trong thực tế.

Lời giải chi tiết bài 6 trang 41

Để giải bài 6 trang 41 Chuyên đề học tập Toán 11 Chân trời sáng tạo, chúng ta cần thực hiện các bước sau:

  1. Bước 1: Xác định hàm số cần xét.
  2. Bước 2: Tính đạo hàm cấp nhất của hàm số.
  3. Bước 3: Tìm các điểm dừng của hàm số (điểm mà đạo hàm cấp nhất bằng 0 hoặc không tồn tại).
  4. Bước 4: Lập bảng biến thiên của hàm số để xác định khoảng đơn điệu và cực trị.
  5. Bước 5: Kiểm tra lại kết quả và trình bày lời giải một cách rõ ràng, logic.

Ví dụ minh họa

Giả sử hàm số cần xét là f(x) = x3 - 3x2 + 2.

Bước 1: Hàm số f(x) = x3 - 3x2 + 2.

Bước 2: Đạo hàm cấp nhất: f'(x) = 3x2 - 6x.

Bước 3: Tìm điểm dừng: f'(x) = 0 => 3x2 - 6x = 0 => x = 0 hoặc x = 2.

Bước 4: Lập bảng biến thiên:

x-∞02+∞
f'(x)+-+
f(x)

Bước 5: Kết luận: Hàm số f(x) đồng biến trên khoảng (-∞, 0) và (2, +∞), nghịch biến trên khoảng (0, 2). Hàm số đạt cực đại tại x = 0 với giá trị f(0) = 2 và đạt cực tiểu tại x = 2 với giá trị f(2) = -2.

Mẹo giải bài tập

  • Nắm vững các công thức tính đạo hàm cơ bản.
  • Sử dụng quy tắc chuỗi để tính đạo hàm của hàm hợp.
  • Vẽ đồ thị hàm số để hình dung rõ hơn về khoảng đơn điệu và cực trị.
  • Kiểm tra lại kết quả bằng cách thay các giá trị x vào hàm số và đạo hàm.

Tài liệu tham khảo

Để học tập và ôn luyện hiệu quả, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 11 Chân trời sáng tạo.
  • Sách bài tập Toán 11 Chân trời sáng tạo.
  • Các trang web học toán online uy tín như giaitoan.edu.vn.

Kết luận

Bài 6 trang 41 Chuyên đề học tập Toán 11 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Hy vọng với lời giải chi tiết và các mẹo giải bài tập trên, bạn sẽ tự tin hơn trong quá trình học tập và giải quyết các bài toán tương tự.

Tài liệu, đề thi và đáp án Toán 11