Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 3 trang 14 Chuyên đề học tập Toán 11 Chân trời sáng tạo. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Chúng tôi luôn cố gắng mang đến những tài liệu học tập chất lượng, hỗ trợ tối đa cho quá trình học tập của các em. Hãy cùng theo dõi và luyện tập để đạt kết quả tốt nhất!
Cho phép tịnh tiến \({T_{\vec u}}\) trong đó \(\vec u = \left( {3;5} \right)\)
Đề bài
Cho phép tịnh tiến \({T_{\vec u}}\) trong đó \(\vec u = \left( {3;5} \right)\)
a) Tìm ảnh của các điểm \(\;A\left( {-3;{\rm{ }}4} \right),{\rm{ }}B\left( {2;{\rm{ }}-7} \right)\;\)qua \({T_{\vec u}}\)
b) Biết rằng M’(2; 6) là ảnh của điểm M qua \({T_{\vec u}}\). Tìm tọa độ của điểm M.
c) Tìm ảnh của đường thẳng \(d:{\rm{ }}4x{\rm{ }}-{\rm{ }}3y{\rm{ }} + {\rm{ }}7{\rm{ }} = {\rm{ }}0\) qua \({T_{\vec u}}\).
Phương pháp giải - Xem chi tiết
Cho vectơ \(\overrightarrow u \), phép tịnh tiến theo vectơ \(\overrightarrow u \) là phép biến hình biến điểm M thành điểm M’ sao cho \(\overrightarrow {MM'} = \overrightarrow u \).
Nếu \(M'(x';y')\) là ảnh của \(M(x;y)\) qua phép tịnh tiến \({T_{\overrightarrow u }}\) , \(\overrightarrow u = \left( {a;\,b} \right)\) thì biểu thức tọa độ của phép tịnh tiến là \(\left\{ \begin{array}{l}x' = x + a\\y' = y + b\end{array} \right.\)
Lời giải chi tiết
a) Đặt \(A'\left( {x';y'} \right) = {T_{\vec u}}\left( A \right)\).
Suy ra \(\overrightarrow {A{A'}} = \vec u\) mà \(\overrightarrow {AA'} = \left( {x' + 3;y' - 4} \right)\)
Do đó \(\left\{ {\begin{array}{*{20}{l}}{{\rm{x'}} + 3 = 3}\\{{\rm{y'}} - 4 = 5}\end{array}} \right.\)
Vì vậy \(\left\{ {\begin{array}{*{20}{l}}{{\rm{x'}} = 0}\\{{\rm{y'}} = 9}\end{array}} \right.\)
Suy ra tọa độ A’(0; 9).
Đặt \(B'\left( {x'';y''} \right) = {T_{\vec u}}\left( B \right)\).
Suy ra \(\overrightarrow {BB'} = {\rm{\vec u}}\) mà \(\overrightarrow {BB'} = \left( {x'' - 2\;;\;{\rm{y''}} + 7} \right)\)
Do đó \(\left\{ {\begin{array}{*{20}{l}}{{\rm{x''}} - 2 = 3}\\{{\rm{y''}} + 7 = 5}\end{array}} \right.\)
Vì vậy \(\left\{ {\begin{array}{*{20}{l}}{{\rm{x''}} = 5}\\{{\rm{y''}} = - 2}\end{array}} \right.\)
Suy ra tọa độ B’(5; –2).
Vậy ảnh của các điểm A, B qua \({T_{\vec u}}\) lần lượt là các điểm A’(0; 9), B’(5; –2).
b) Gọi \(M({x_M};{\rm{ }}{y_M}).\)
Theo đề, ta có \(M' = {T_{\vec u}}\left( M \right)\).
Suy ra \(\overrightarrow {MM'} = {\rm{\vec u}}\), mà \(\overrightarrow {MM'} = \left( {2 - {{\rm{x}}_{\rm{M}}}\;;\;6 - {{\rm{y}}_{\rm{M}}}} \right)\)
Do đó \(\left\{ {\begin{array}{*{20}{l}}{2 - {{\rm{x}}_{\rm{M}}} = 3}\\{6 - {{\rm{y}}_{\rm{M}}} = 5}\end{array}} \right.\)
Vì vậy \(\left\{ {\begin{array}{*{20}{l}}{{{\rm{x}}_{\rm{M}}} = - 1}\\{{{\rm{y}}_{\rm{M}}} = 1}\end{array}} \right.\)
Vậy tọa độ M(–1; 1) thỏa mãn yêu cầu bài toán.
c) Chọn điểm \(N\left( {-1;{\rm{ }}1} \right) \in d:{\rm{ }}4x-3y + 7 = 0.\)
Gọi \(N'\left( {x';{\rm{ }}y'} \right)\) lần lượt là ảnh của N qua \({T_{\vec u}}\)
Ta có \({T_{\vec u}}\left( N \right) = N'\), suy ra \(\overrightarrow {N{N'}} = \vec u\) với \(\overrightarrow {NN'} = \left( {x' + 1;y' - 1} \right)\)
Do đó \(\left\{ {\begin{array}{*{20}{l}}{{\rm{x'}} + 1 = 3}\\{{\rm{y'}} - 1 = 5}\end{array}} \right.\)
Vì vậy \(\left\{ {\begin{array}{*{20}{l}}{{\rm{x'}} = 2}\\{{\rm{y'}} = 6}\end{array}} \right.\)
Suy ra tọa độ N’(2; 6).
Đường thẳng \(d:{\rm{ }}4x-3y + 7 = 0\) có vectơ pháp tuyến \({\vec n_d} = \left( {4; - 3} \right)\).
Gọi d’ là ảnh của d qua \({T_{\vec u}}\) do đó d’ song song hoặc trùng với d nên d’ nhận \({\vec n_d} = \left( {4; - 3} \right)\) làm vectơ pháp tuyến.
Ta có d’ là đường thẳng đi qua \(M'\left( {2;{\rm{ }}6} \right)\) và có vectơ pháp tuyến \({\vec n_d} = \left( {4; - 3} \right)\) nên có phương trình là:
\(4\left( {x-2} \right)-3\left( {y-6} \right) = 0 \Leftrightarrow 4x-3y + 10 = 0.\)
Vậy ảnh của đường thẳng \(d:4x-3y + 7 = 0\) qua \({T_{\vec u}}\) là đường thẳng \(d':4x-3y + 10 = 0.\)
Bài 3 trang 14 Chuyên đề học tập Toán 11 Chân trời sáng tạo thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về hàm số, đồ thị hàm số và các phép biến đổi hàm số để giải quyết các bài toán cụ thể. Bài tập này thường yêu cầu học sinh phân tích hàm số, xác định các yếu tố quan trọng như tập xác định, tập giá trị, tính đơn điệu, cực trị và vẽ đồ thị hàm số.
Để giải quyết bài 3 trang 14 một cách hiệu quả, chúng ta cần nắm vững các kiến thức sau:
Bài 3 thường bao gồm một hoặc nhiều câu hỏi nhỏ, yêu cầu học sinh thực hiện các thao tác sau:
Giả sử bài 3 yêu cầu chúng ta xét hàm số y = x3 - 3x2 + 2. Chúng ta sẽ thực hiện các bước sau:
Để giải bài 3 trang 14 Chuyên đề học tập Toán 11 Chân trời sáng tạo một cách chính xác và hiệu quả, các em cần lưu ý những điều sau:
Để học tập và ôn luyện Toán 11 hiệu quả, các em có thể tham khảo các tài liệu sau:
Bài 3 trang 14 Chuyên đề học tập Toán 11 Chân trời sáng tạo là một bài tập quan trọng, giúp các em củng cố kiến thức về hàm số, đồ thị hàm số và các phép biến đổi hàm số. Hy vọng với hướng dẫn chi tiết và ví dụ minh họa trên, các em sẽ tự tin giải quyết bài tập này và đạt kết quả tốt nhất trong môn Toán.