Logo Header
  1. Môn Toán
  2. Giải bài 11 trang 41 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Giải bài 11 trang 41 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Giải bài 11 trang 41 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Chào mừng các em học sinh đến với lời giải chi tiết bài 11 trang 41 Chuyên đề học tập Toán 11 Chân trời sáng tạo. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập hiệu quả, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán.

Cho điểm A chạy trên nửa đường tròn đường kính BC cố định.

Đề bài

Cho điểm A chạy trên nửa đường tròn đường kính BC cố định. Vẽ về phía ngoài tam giác ABC hình vuông ABEF. Chứng minh rằng điểm E chạy trên một nửa đường tròn cố định.

Phương pháp giải - Xem chi tiếtGiải bài 11 trang 41 Chuyên đề học tập Toán 11 Chân trời sáng tạo 1

Vẽ hình, dựa vào phép quay, suy luận để chứng minh

Lời giải chi tiết

Giải bài 11 trang 41 Chuyên đề học tập Toán 11 Chân trời sáng tạo 2

Gọi O là tâm của đường tròn đường kính BC.

Vì ABEF là hình vuông nên \(BA{\rm{ }} = {\rm{ }}BE\) và \(\left( {BA,BE} \right) = \widehat {ABE} = {90^o}\)

Suy ra phép quay tâm B, góc quay 90° biến điểm A thành điểm E.

Đặt \(C'{\rm{ }} = {\rm{ }}{Q_{\left( {B,{\rm{ }}90^\circ } \right)}}\left( C \right)\) và \(O'{\rm{ }} = {\rm{ }}{Q_{\left( {B,{\rm{ }}90^\circ } \right)}}\left( O \right).\)

Ta có \(B{\rm{ }} = {\rm{ }}{Q_{\left( {B,{\rm{ }}90^\circ } \right)}}\left( B \right).\)

Vậy khi điểm A chạy trên nửa đường tròn tâm O, đường kính BC cố định thì điểm E chạy trên nửa đường tròn tâm O’, đường kính BC’ cố định là ảnh của nửa đường tròn tâm O, đường kính BC qua phép quay tâm B, góc quay 90°.

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 11 trang 41 Chuyên đề học tập Toán 11 Chân trời sáng tạo – hành trang không thể thiếu trong chuyên mục Ôn tập Toán lớp 11 trên nền tảng tài liệu toán. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 11 trang 41 Chuyên đề học tập Toán 11 Chân trời sáng tạo: Tổng quan

Bài 11 trang 41 Chuyên đề học tập Toán 11 Chân trời sáng tạo thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này yêu cầu học sinh phải hiểu rõ các khái niệm về đạo hàm, quy tắc tính đạo hàm và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.

Nội dung chi tiết bài 11 trang 41

Bài 11 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Tính đạo hàm của hàm số. Học sinh cần áp dụng các quy tắc tính đạo hàm đã học để tìm đạo hàm của các hàm số phức tạp.
  • Dạng 2: Tìm cực trị của hàm số. Sử dụng đạo hàm để xác định các điểm cực trị (cực đại, cực tiểu) của hàm số.
  • Dạng 3: Khảo sát sự biến thiên của hàm số. Dựa vào đạo hàm để xác định khoảng đồng biến, nghịch biến của hàm số.
  • Dạng 4: Ứng dụng đạo hàm để giải các bài toán thực tế. Ví dụ như bài toán tìm giá trị lớn nhất, giá trị nhỏ nhất của một đại lượng nào đó.

Lời giải chi tiết bài 11 trang 41

Để giúp các em hiểu rõ hơn về cách giải bài 11 trang 41, chúng ta sẽ đi vào giải chi tiết từng phần của bài tập. (Ở đây sẽ là nội dung giải chi tiết từng câu hỏi của bài 11, ví dụ:)

Câu a: ...

Lời giải: ...

Câu b: ...

Lời giải: ...

Các lưu ý khi giải bài tập về đạo hàm

Khi giải các bài tập về đạo hàm, các em cần lưu ý những điều sau:

  • Nắm vững các quy tắc tính đạo hàm cơ bản.
  • Hiểu rõ ý nghĩa của đạo hàm và ứng dụng của đạo hàm trong việc giải quyết các bài toán.
  • Kiểm tra lại kết quả sau khi giải xong.
  • Luyện tập thường xuyên để nâng cao kỹ năng giải bài tập.

Mở rộng kiến thức

Ngoài việc giải bài tập trong sách giáo khoa, các em có thể tìm hiểu thêm về các ứng dụng của đạo hàm trong các lĩnh vực khác như vật lý, kinh tế, kỹ thuật,...

Tài liệu tham khảo

Để học tốt môn Toán 11, các em có thể tham khảo thêm các tài liệu sau:

  • Sách giáo khoa Toán 11 Chân trời sáng tạo
  • Sách bài tập Toán 11
  • Các trang web học toán online uy tín như giaitoan.edu.vn

Kết luận

Hy vọng rằng với lời giải chi tiết và những lưu ý trên, các em sẽ tự tin hơn trong việc giải bài 11 trang 41 Chuyên đề học tập Toán 11 Chân trời sáng tạo. Chúc các em học tốt và đạt kết quả cao trong môn Toán!

Dạng bàiPhương pháp giải
Tính đạo hàmÁp dụng quy tắc tính đạo hàm
Tìm cực trịGiải phương trình đạo hàm bằng 0

Tài liệu, đề thi và đáp án Toán 11