Chào mừng các em học sinh đến với bài học về lý thuyết phép nhân và phép chia hết hai số nguyên trong chương trình Toán 6 Chân trời sáng tạo. Bài học này sẽ cung cấp cho các em những kiến thức cơ bản và quan trọng nhất về hai phép tính này.
Chúng ta sẽ cùng nhau tìm hiểu về quy tắc dấu, tính chất của phép nhân, phép chia và cách áp dụng chúng vào giải các bài toán thực tế. Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán.
Lý thuyết Phép nhân và phép chia hết hai số nguyên Toán 6 Chân trời sáng tạo ngắn gọn, đầy đủ, dễ hiểu
I. Nhân hai số nguyên
1.Nhân hai số nguyên khác dấu
Để nhân hai số nguyên khác dấu, ta làm như sau:
Bước 1: Bỏ dấu “-” trước số nguyên âm, giữ nguyên số còn lại
Bước 2: Tính tích của hai số nguyên dương nhận được ở Bước 1
Bước 3: Thêm dấu “-” trước kết quả nhận được ở Bước 2, ta có kết quả cần tìm.
Nhận xét: Tích của hai số nguyên khác dấu là số nguyên âm.
Chú ý:
Cho hai số nguyên dương \(a\) và \(b\), ta có:
\(\left( { + a} \right).\left( { - b} \right) = - a.b\)
\(\left( { - a} \right).\left( { + b} \right) = - a.b\)
Ví dụ:
a) \(( - 20).5 = - \left( {20.5} \right) = - 100.\)
b) \(15.\left( { - 10} \right) = - \left( {15.10} \right) = - 150.\)
c) \(20.\left( { + 50} \right) + 4.\left( { - {\rm{ }}40} \right) = 1000 - (4.40) = 1000 - 160 = 840. \)
2.Nhân hai số nguyên cùng dấu
Để nhân hai số nguyên âm, ta làm như sau:
Để nhân hai số nguyên âm, ta làm như sau:
Bước 1: Bỏ dấu “-” trước mỗi số
Bước 2: Tính tích của hai số nguyên dương nhận được ở Bước 1, ta có tích cần tìm.
Nhận xét:
- Khi nhân hai số nguyên dương, ta nhân chúng như nhân hai số tự nhiên.
- Tích của hai số nguyên cùng dấu là số nguyên dương.
Chú ý:
Cho hai số nguyên dương \(a\) và \(b\), ta có:
\(\left( { - a} \right).\left( { - b} \right) = ( + a).( + a) = a.b\)
\(\left( { - a} \right).\left( { + b} \right) = - a.b\)
Ví dụ:
a) \(( - 4).( - 15) = 4.15 = 60\)
b) \(\left( { + 2} \right).( + 5) = 2.5 = 10\).
Phép nhân các số nguyên có các tính chất:
+) Giao hoán: \(a.b = b.a\)
+) Kết hợp: \(a\left( {bc} \right) = \left( {ab} \right)c\)
+) Phân phối đối với phép cộng: \(a\left( {b + c} \right) = ab + ac\)
+) Phân phối đối với phép trừ: \(a\left( {b - c} \right) = ab - ac\)
Nhận xét:
Trong một tích nhiều thừa số ta có thể:
- Đổi chỗ hai thừa số tùy ý.
- Dùng dấu ngoặc để nhóm các thừa số một cách tùy ý:
Chú ý:
+) \(a.1 = 1.a = a\)
+) \(a.0 = 0.a = 0\)
+) Cho hai số nguyên \(x,\,\,y\):
Nếu \(x.y = 0\) thì \(x = 0\) hoặc \(y = 0\).
Ví dụ 1:
a) \(\left( { - 3} \right).5 = 5.\left( { - 3} \right) = - 15\)
b) \(\left[ {\left( { - 2} \right).7} \right].\left( { - 3} \right) = \left( { - 2} \right).\left[ {7.\left( { - 3} \right)} \right] = \left( { - 2} \right).\left( { - 21} \right) = 42\)
c) \(\left( { - 5} \right).12 + \left( { - 5} \right).88 = \left( { - 5} \right).\left( {12 + 88} \right) = \left( { - 5} \right).100 = - 500\).
d) \(\left( { - 9} \right).36 - ( - 9).26 = \left( { - 9} \right).\left( {36 - 26} \right) = \left( { - 9} \right).10 = - 90\)
Ví dụ 2:
Nếu \(\left( {x - 1} \right)\left( {x + 5} \right) = 0\) thì \(x - 1 = 0\) hoặc \(x + 5 = 0\).
Suy ra \(x = 1\) hoặc \(x = - 5\).
1.Phép chia hết
Cho \(a,b \in \mathbb{Z}\) và \(b \ne 0\). Nếu có số nguyên \(q\) sao cho \(a = bq\) thì:
Ta nói \(a\) chia hết cho \(b\), kí hiệu là \(a \vdots b\).
Ta gọi \(q\) là thương của phép chia \(a\) cho \(b\), kí hiệu \(a:b = q\).
Ví dụ:
\(( - 15) = 3.( - 5)\) nên ta nói:
+) \( - 15\) chia hết cho \(( - 5)\)
+) \( - 15:( - 5) = 3\)
+) \(3\) là thương của phép chia \( - 15\) cho \( - 5\).
2.Phép chia hai số nguyên khác dấu
Để chia hai số nguyên khác dấu ta làm như sau:
Bước 1: Bỏ dấu “-” trước số nguyên âm, giữ nguyên số còn lại
Bước 2: Tính thương của hai số nguyên dương nhận được ở Bước 1
Bước 3: Thêm dấu “-” trước kết quả nhận được ở Bước 2, ta có thương cần tìm.
Ví dụ:
3. Phép chia hết hai số nguyên cùng dấu
Để chia hai số nguyên âm ta làm như sau:
Bước 1: Bỏ dấu “-” trước mỗi số.
Bước 2: Tính thương của hai số nguyên dương nhận được ở Bước 1, ta có thương cần tìm.
Nhận xét: Phép chia hai số nguyên dương chính là phép chia hai số tự nhiên.
Nhận xét: Phép chia hai số nguyên dương chính là phép chia hai số tự nhiên.
Chú ý:
Cách nhận biết dấu của thương:
\(\begin{array}{l}\left( + \right):\left( + \right) = \left( + \right)\\\left( - \right):\left( - \right) = \left( + \right)\\\left( - \right):\left( + \right) = \left( - \right)\\\left( + \right):\left( - \right) = \left( - \right)\end{array}\)
Ví dụ:
Cho \(a,b \in \mathbb{Z}\). Nếu \(a \vdots b\) thì ta nói \(a\) là bội của \(b\) và \(b\) là ước của \(a\).
Nhận xét:
- Nếu \(a\) là bội của \(b\) thì \( - a\) cũng là bội của \(b\).
- Nếu \(b\) là ước của \(a\) thì \( - b\) cũng là ước của \(a\).
Chú ý: Khi \(c\) vừa là ước của \(a\), vừa là ước của \(b\) thì \(c\) được gọi là ước chung của \(a\) và \(b\).
Kí hiệu ước chung của hai số nguyên \(a,\,b\) là ƯC(a, b).
Ví dụ 1:
a) \(5\) là một ước của \( - 30\) vì \(\left( { - 30} \right) \vdots 5\).
b) \( - 42\) là một bội của \( - 7\) vì \(\left( { - 42} \right) \vdots \left( { - 7} \right)\).
Ví dụ 2:
a) Các ước của 4 là: \(1;\, - 1;\,2;\, - 2;\,4;\, - 4\).
b) Các bội của 8 là: \(0;\,8;\, - 8;\,16;\, - 16;...\)
Ví dụ 3:
Ta thấy \(1;\, - 1;\,2;\, - 2\) vừa là ước của \(6\), vừa là ước của \(4\) nên chúng gọi là ước chung của \(6\) và \(4\).
Khi đó ta viết: ƯC(6; 4)={1;-1;2;-2}.
Trong chương trình Toán 6, việc nắm vững lý thuyết về phép nhân và phép chia hết hai số nguyên là nền tảng quan trọng để giải quyết các bài toán phức tạp hơn. Bài viết này sẽ cung cấp một cách chi tiết và dễ hiểu về các khái niệm, quy tắc và tính chất liên quan đến hai phép tính này, theo chương trình Chân trời sáng tạo.
Phép nhân hai số nguyên là một phép toán cơ bản trong toán học. Để hiểu rõ về phép nhân hai số nguyên, chúng ta cần nắm vững các quy tắc sau:
Ví dụ:
Phép chia hết hai số nguyên là phép chia mà thương là một số nguyên. Để xác định một số nguyên có chia hết cho một số nguyên khác hay không, chúng ta sử dụng khái niệm về ước và bội.
Quy tắc chia hết:
Ví dụ:
Phép nhân và phép chia là hai phép toán ngược nhau. Điều này có nghĩa là:
Ví dụ:
Để củng cố kiến thức về phép nhân và phép chia hết hai số nguyên, chúng ta hãy cùng giải một số bài tập sau:
Hy vọng rằng bài viết này đã giúp các em hiểu rõ hơn về lý thuyết phép nhân và phép chia hết hai số nguyên trong chương trình Toán 6 Chân trời sáng tạo. Việc nắm vững kiến thức này sẽ là bước đệm quan trọng để các em học tốt môn Toán và giải quyết các bài toán phức tạp hơn trong tương lai. Hãy luyện tập thường xuyên để củng cố kiến thức và tự tin hơn trong các kỳ thi.