Chào mừng các em học sinh đến với bài học về Lý thuyết Số nguyên tố, Hợp số và Phân tích một số ra thừa số nguyên tố trong chương trình Toán 6 Chân trời sáng tạo. Bài học này sẽ cung cấp cho các em những kiến thức cơ bản và quan trọng nhất về các khái niệm này.
Chúng ta sẽ cùng nhau tìm hiểu định nghĩa, tính chất của số nguyên tố, hợp số, và cách phân tích một số tự nhiên bất kỳ thành tích của các thừa số nguyên tố. Đây là nền tảng quan trọng cho các kiến thức toán học nâng cao hơn.
Lý thuyết Số nguyên tố. Hợp số. Phân tích một số ra thừa số nguyên tố Toán 6 Chân trời sáng tạo ngắn gọn, đầy đủ, dễ hiểu
I. Số nguyên tố và hợp số
1. Số nguyên tố
- Số nguyên tố là số tự nhiên lớn hơn \(1,\)chỉ có \(2\)ước là \(1\) và chính nó.
Ví dụ : Ư\((13) = \{ 13;1\} \) nên \(13\) là số nguyên tố.
Cách kiểm tra 1 số là số nguyên tố:
Để kết luận số a là số nguyên tố \(\left( {a > 1} \right),\)ta làm như sau:
Bước 1: Tìm số nguyên tố lớn nhất \(b\) mà \({b^2} < a\).
Bước 2: Lấy \(a\) chia cho các số nguyên tố từ 2 đến số nguyên tố \(b\), nếu \(a\) không chia hết cho số nào thì \(a\) là số nguyên tố.
2. Hợp số
Hợp số là số tự nhiên lớn hơn \(1,\) có nhiều hơn \(2\) ước.
Ví dụ: số \(15\) có \(4\) ước là \(1;3;5;15\) nên \(15\) là hợp số.
1. Cách tìm một ước nguyên tố của một số
Phân tích một số tự nhiên lớn hơn 1 ra thừa số nguyên tố là viết số đó dưới dạng một tích các thừa số nguyên tố.
Để tìm một ước nguyên tố của \(a\) ta có thể làm như sau:
Bước 1: Chia \(a\) cho các số nguyên tố theo thứ tự tăng dần \(2,3,5,7,11,13,...\)
Bước 2: Số chia trong phép chia hết đầu tiên là một ước của \(a\)
Ví dụ:
Tìm ước nguyên tố của 91:
Theo các dấu hiệu chia hết cho 2, 3 và 5 thì 91 không chia hết cho 2 , cho 3 và cho 5.
Ta chia 91 cho số nguyên tố tiếp theo:
Ta lấy 91:7=13. Vì thế 7 là một ước nguyên tố của 91.
2. Phân tích một số ra thừa số nguyên tố
- Phân tích một số tự nhiên lớn hơn \(1\) ra thừa số nguyên tố là viết số đó dưới dạng một tích các thừa số nguyên tố.
- Viết các thừa số nguyên tố theo thứ tự từ bé đến lớn, tích các thừa số giống nhau dưới dạng lũy thừa.
Sơ đồ cây:
Bước 1: Phân tích số n thành tích của hai số bất kì khác 1 và chính nó.
Bước 2: Tiếp tục phân tích ước thứ nhất và ước thứ hai thành tích của hai số bất kì khác 1 và chính nó.
Bước 3: Cứ như vậy đến khi nào xuất hiện số nguyên tố thì dừng lại.
Bước 4: Số n bằng tích của các số cuối cùng của mỗi nhánh.
Sơ đồ cột:
Chia số \(n\) cho một số nguyên tố (xét từ nhỏ đến lớn ), rồi chia thương tìm được cho một số nguyên tố (cũng xét từ nhỏ đến lớn), cứ tiếp tục như vậy cho đến khi thương bằng \(1.\)
Ví dụ: Số \(76\) được phân tích như sau:
\(76\) | \(2\) |
\(38\) | \(2\) |
\(19\) | \(19\) |
\(1\) |
Như vậy \(76 = {2^2}.19\)
CÁC DẠNG TOÁN VỀ SỐ NGUYÊN TỐ, HỢP SỐ. PHÂN TÍCH MỘT SỐ RA THỪA SỐ NGUYÊN TỐ
Phương pháp:
+ Căn cứ vào định nghĩa số nguyên tố và hợp số.
+ Căn cứ vào các dấu hiệu chia hết.
+ Có thể dùng bảng số nguyên tố ở cuối sgk để xác định một số (nhỏ hơn 1000) là số nguyên tố hay không.
Ví dụ:
Phương pháp:
+ Để chứng minh một số là số nguyên tố, ta chứng minh số đó không có ước nào khác $1$ và chính nó.
+ Để chững minh một số là hợp số, ta chỉ ra rằng tồn tại một ước của nó khác $1$ và khác chính nó. Nói cách khác, ta chứng minh số đó có nhiều hơn hai ước.
Ví dụ:
a) $5$ là số nguyên tố vì nó chỉ có hai ước là $1$ và $5$.
b) $12$ là hợp số vì nó có nhiều hơn hai ước. Cụ thể 12 có các ước là: $1; 2; 3; 4; 6; 12$
Phương pháp:
Ta thường phân tích một số tự nhiên $n\left( {n > 1} \right)$ ra thừa số nguyên tố bằng 2 cách:
+ Sơ đồ cây
+ Phân tích theo hàng dọc.
Phương pháp:
+ Phân tích số cho trước ra thừa số nguyên tố.
+ Chú ý rằng nếu $c = a.b$ thì $a$ và $b$ là hai ước của $c.$
Phương pháp:
Phân tích đề bài, đưa về việc tìm ước của một số cho trước bằng cách phân tích số đó ra thừa số nguyên tố.
Trong chương trình Toán 6 Chân trời sáng tạo, việc nắm vững kiến thức về số nguyên tố, hợp số và phân tích một số ra thừa số nguyên tố là vô cùng quan trọng. Đây là nền tảng cho nhiều kiến thức toán học khác trong tương lai. Bài viết này sẽ cung cấp một cách chi tiết và dễ hiểu về các khái niệm này.
Định nghĩa: Số nguyên tố là số tự nhiên lớn hơn 1, chỉ chia hết cho 1 và chính nó.
Ví dụ: 2, 3, 5, 7, 11, 13, 17, 19,...
Lưu ý: Số 1 không phải là số nguyên tố.
Định nghĩa: Hợp số là số tự nhiên lớn hơn 1, có nhiều hơn hai ước số.
Ví dụ: 4, 6, 8, 9, 10, 12, 14, 15,...
Lưu ý: Mọi số tự nhiên lớn hơn 1 đều là số nguyên tố hoặc hợp số.
Định nghĩa: Phân tích một số ra thừa số nguyên tố là viết số đó dưới dạng tích của các thừa số nguyên tố.
Ví dụ:
Bài 1: Phân tích số 60 ra thừa số nguyên tố.
Giải:
Vậy, 60 = 2 x 2 x 3 x 5 = 22 x 3 x 5
Bài 2: Số 28 có phải là số nguyên tố hay hợp số? Giải thích.
Giải: Số 28 có các ước số là 1, 2, 4, 7, 14, 28. Vì số 28 có nhiều hơn hai ước số, nên 28 là hợp số.
Việc phân tích một số ra thừa số nguyên tố có nhiều ứng dụng trong toán học, đặc biệt là trong các bài toán về ước chung lớn nhất (ƯCLN), bội chung nhỏ nhất (BCNN), và các bài toán liên quan đến tính chia hết.
Để nắm vững kiến thức về số nguyên tố, hợp số và phân tích một số ra thừa số nguyên tố, các em nên luyện tập thêm nhiều bài tập khác nhau. Các em có thể tìm thấy các bài tập này trong sách giáo khoa, sách bài tập, hoặc trên các trang web học toán online như giaitoan.edu.vn.
Hy vọng bài viết này đã giúp các em hiểu rõ hơn về Lý thuyết Số nguyên tố, Hợp số và Phân tích một số ra thừa số nguyên tố Toán 6 Chân trời sáng tạo. Chúc các em học tập tốt!