Logo Header
  1. Môn Toán
  2. Lý thuyết Phép cộng và phép trừ phân số Toán 6 KNTT với cuộc sống

Lý thuyết Phép cộng và phép trừ phân số Toán 6 KNTT với cuộc sống

Lý thuyết Phép cộng và phép trừ phân số Toán 6 KNTT với cuộc sống

Chào mừng các em học sinh đến với bài học về lý thuyết phép cộng và phép trừ phân số trong chương trình Toán 6 KNTT. Bài học này sẽ giúp các em hiểu rõ các quy tắc, tính chất và cách áp dụng chúng vào giải các bài toán thực tế.

Chúng ta sẽ cùng nhau khám phá những kiến thức cơ bản về phân số, cách cộng và trừ các phân số có cùng mẫu số, khác mẫu số, cũng như các bài tập minh họa để các em có thể tự tin làm bài.

Lý thuyết Phép cộng và phép trừ phân số Toán 6 KNTT với cuộc sống ngắn gọn, đầy đủ, dễ hiểu

I. Phép cộng hai phân số

a) Cộng hai phân số cùng mẫu:

Muốn cộng hai phân số cùng mẫu, ta cộng các tử và giữ nguyên mẫu.

$\dfrac{a}{m} + \dfrac{b}{m} = \dfrac{{a + b}}{m}$$(m \ne 0)$

Ví dụ:

 $\dfrac{8}{5} + \dfrac{7}{5} = \dfrac{{8 + 7}}{5} = \dfrac{{15}}{5} = 3$

b) Cộng hai phân số khác mẫu:

Muốn cộng hai phân số khác mẫu, ta viết chúng dưới dạng hai phân số cùng mẫu rồi cộng các tử với nhau và giữ nguyên mẫu chung.

Ví dụ:

$\dfrac{3}{2} + \dfrac{{ - 3}}{5} = \dfrac{{15}}{{10}} + \dfrac{{ - 6}}{{10}} = \dfrac{{15 + \left( { - 6} \right)}}{{10}} = \dfrac{9}{{10}}$.

II. Một số tính chất của phép cộng phân số

+ Tính chất giao hoán: $\dfrac{a}{b} + \dfrac{c}{d} = \dfrac{c}{d} + \dfrac{a}{b}$

+ Tính chất kết hợp:

$\left( {\dfrac{a}{b} + \dfrac{c}{d}} \right) + \dfrac{p}{q} = \dfrac{a}{b} + \left( {\dfrac{c}{d} + \dfrac{p}{q}} \right)$

+ Cộng với số $0$ : $\dfrac{a}{b} + 0 = 0 + \dfrac{a}{b} = \dfrac{a}{b}$

Ví dụ:

- Tính chất giao hoán

$\dfrac{1}{2} + \dfrac{3}{2} = \dfrac{3}{2} + \dfrac{1}{2}$$ = \dfrac{4}{2} = 2$

- Tính chất kết hợp:

 $\left( {\dfrac{1}{2} + \dfrac{3}{4}} \right) + \dfrac{1}{4}$$ = \dfrac{1}{2} + \left( {\dfrac{3}{4} + \dfrac{1}{4}} \right)$$ = \dfrac{1}{2} + 1 = \dfrac{3}{2}$

- Tính chất cộng với số 0:

$\dfrac{1}{4} + 0 = 0 + \dfrac{1}{4} = \dfrac{1}{4}$.

III. Số đối của một phân số

Hai số gọi là đối nhau nếu tổng của chúng bằng $0$. Kí hiệu số đối của phân số $\dfrac{a}{b}$ là $ - \dfrac{a}{b}$.

$\dfrac{a}{b} + \left( { - \dfrac{a}{b}} \right) = 0$.

Ví dụ:

$\dfrac{{ - 1}}{5}$ là số đối của $\dfrac{1}{5}$, vì $\dfrac{{ - 1}}{5} + \dfrac{1}{5} = 0$.

Chú ý: Số đối của $0$ là $0$.

IV. Phép trừ hai phân số

- Muốn trừ hai phân số cùng mẫu ta lấy tử của phân số thứ nhất trừ đi tử của phân số thứ hai và giữ nguyên mẫu.

$\dfrac{a}{m} - \dfrac{b}{m} = \dfrac{{a - b}}{m}$

- Muốn trừ hai phân số khác mẫu, ta quy đồng hai phân số, rồi trừ hai phân số đó.

Ví dụ:

a) $\dfrac{2}{7} - \dfrac{5}{7} = \dfrac{{2 - 5}}{7} = \dfrac{{ - 3}}{7}$

b) $\dfrac{1}{6} - \dfrac{1}{2} = \dfrac{1}{6} + \left( { - \dfrac{1}{2}} \right) = \dfrac{1}{6} + \left( {\dfrac{{ - 3}}{6}} \right) = \dfrac{{1 + \left( { - 3} \right)}}{6} = \dfrac{{ - 2}}{6} = \dfrac{{ - 1}}{3}.$

Nhận xét:Muốn trừ một phân số cho một phân số, ta có thể cộng số bị trừ với số đối của số trừ.

Ví dụ:

$\dfrac{5}{6} - \dfrac{{ - 1}}{3} = \dfrac{5}{6} + \dfrac{1}{3} = \dfrac{5}{6} + \dfrac{2}{6} = \dfrac{7}{6}$.

CÁC DẠNG TOÁN VỀ PHÉP CỘNG, PHÉP TRỪ PHÂN SỐ

I. Tìm số đối của một số cho trước

Muốn tìm số đối của một số khác $0$, ta chỉ cần đổi dấu của nó.

Chú ý: $ - \dfrac{a}{b} = \dfrac{{ - a}}{b} = \dfrac{a}{{ - b}}$

II. Thực hiện phép cộng, trừ các phân số

Áp dụng các qui tắc cộng (trừ) hai phân số cùng mẫu, cộng (trừ) hai phân số không cùng mẫu.

 Chú ý:

+ Nên rút gọn phân số (nếu có phân số chưa tối giản) trước khi cộng (trừ).

+ Rút gọn kết quả (nếu có thể).

III. Tìm số chưa biết trong một tổng, một hiệu

Chú ý quan hệ giữa các số hạng trong một tổng, một hiệu:+ Một số hạng bằng tổng trừ đi số hạng kia+ Số bị trừ bằng hiệu cộng với số trừ+ Số trừ bằng số bị trừ trừ đi hiệu.

IV. Bài toán dẫn đến phép cộng, phép trừ phân số

Bước 1: Căn cứ vào đề bài, lập các phép cộng, phép trừ phân số thích hợp.

Bước 2: Thực hiện phép tính cộng (trừ)

Bước 3: Kết luận.

V. Thực hiện dãy phép tính cộng, trừ các phân số

Ta thực hiện theo các bước sau:+ Viết phân số có mẫu âm thành phân số bằng nó và có mẫu dương+ Thay phép trừ bằng phép cộng với số đối+ Quy đồng mẫu các phân số rồi thực hiện cộng các tử số+ Rút gọn kết quả (nếu có thể)Tùy theo đặc điểm của các phân số ta có thể sử dụng các tính chất của phép cộng phân số để việc tính toán được thuận lợi và nhanh chóng.

VI. So sánh phân số bằng cách sử dụng phép cộng phân số thích hợp

Trong một số trường hợp để so sánh hai phân số, ta có thể cộng chúng với hai phân số thích hợp có cùng tử. So sánh hai phân số được cộng vào này sẽ giúp ta so sánh được hai phân số đã cho.Khi so sánh hai phân số cùng tử cần chú ý:- Trong hai phân số có cùng tử dương, phân số nào có mẫu lớn hơn thì phân số đó nhỏ hơn- Trong hai phân số có cùng tử âm, phân số nào có mẫu lớn hơn thì lớn hơn.

Lý thuyết Phép cộng và phép trừ phân số Toán 6 KNTT với cuộc sống 1

Tự tin bứt phá năm học lớp 6 ngay từ đầu! Khám phá Lý thuyết Phép cộng và phép trừ phân số Toán 6 KNTT với cuộc sống – nội dung then chốt trong chuyên mục giải sgk toán 6 trên nền tảng đề thi toán. Với bộ bài tập toán trung học cơ sở được biên soạn chuyên sâu, cập nhật chính xác theo khung chương trình sách giáo khoa THCS, đây chính là người bạn đồng hành đáng tin cậy giúp các em tối ưu hóa toàn diện quá trình ôn luyện và xây dựng nền tảng kiến thức Toán vững chắc thông qua phương pháp tiếp cận trực quan, mang lại hiệu quả vượt trội không ngờ.

Lý thuyết Phép cộng và phép trừ phân số Toán 6 KNTT với cuộc sống

Phép cộng và phép trừ phân số là một trong những kiến thức cơ bản và quan trọng trong chương trình Toán 6 KNTT. Việc nắm vững lý thuyết và kỹ năng thực hành sẽ giúp học sinh giải quyết các bài toán một cách nhanh chóng và chính xác.

1. Khái niệm về phân số

Phân số là biểu thức của một phần của một đơn vị. Một phân số được viết dưới dạng a/b, trong đó a là tử số và b là mẫu số. ab là các số nguyên, và b khác 0.

2. Phép cộng phân số

Để cộng hai phân số có cùng mẫu số, ta cộng các tử số và giữ nguyên mẫu số:

a/b + c/b = (a + c)/b

Để cộng hai phân số khác mẫu số, ta cần quy đồng mẫu số trước khi cộng. Quy đồng mẫu số là việc tìm một mẫu số chung của hai phân số, sau đó biến đổi các phân số về dạng có cùng mẫu số đó.

Ví dụ: Cộng hai phân số 1/2 và 1/3

  • Tìm mẫu số chung nhỏ nhất của 2 và 3 là 6.
  • Quy đồng mẫu số: 1/2 = 3/6 và 1/3 = 2/6
  • Cộng hai phân số: 3/6 + 2/6 = 5/6

3. Phép trừ phân số

Tương tự như phép cộng, để trừ hai phân số có cùng mẫu số, ta trừ các tử số và giữ nguyên mẫu số:

a/b - c/b = (a - c)/b

Để trừ hai phân số khác mẫu số, ta cũng cần quy đồng mẫu số trước khi trừ.

Ví dụ: Trừ hai phân số 2/3 và 1/4

  • Tìm mẫu số chung nhỏ nhất của 3 và 4 là 12.
  • Quy đồng mẫu số: 2/3 = 8/12 và 1/4 = 3/12
  • Trừ hai phân số: 8/12 - 3/12 = 5/12

4. Tính chất của phép cộng và phép trừ phân số

  • Tính giao hoán:a/b + c/d = c/d + a/b
  • Tính kết hợp:(a/b + c/d) + e/f = a/b + (c/d + e/f)
  • Phép trừ không có tính giao hoán: a/b - c/d ≠ c/d - a/b

5. Bài tập vận dụng

Hãy thực hiện các phép tính sau:

  1. 1/5 + 2/5
  2. 3/7 - 1/7
  3. 1/2 + 1/3
  4. 2/5 - 1/4
  5. 5/6 + 2/9

6. Ứng dụng của phép cộng và phép trừ phân số trong cuộc sống

Phép cộng và phép trừ phân số được ứng dụng rộng rãi trong cuộc sống hàng ngày. Ví dụ:

  • Tính tổng số lượng các thành phần trong một hỗn hợp.
  • Tính phần còn lại sau khi đã sử dụng một phần của một vật.
  • Tính sự thay đổi về số lượng của một đối tượng.

7. Lưu ý khi thực hiện phép cộng và phép trừ phân số

  • Luôn quy đồng mẫu số trước khi cộng hoặc trừ các phân số khác mẫu số.
  • Kiểm tra lại kết quả sau khi thực hiện phép tính.
  • Sử dụng các tính chất của phép cộng và phép trừ phân số để đơn giản hóa các bài toán.

Hy vọng bài học này đã giúp các em hiểu rõ hơn về lý thuyết phép cộng và phép trừ phân số Toán 6 KNTT. Chúc các em học tập tốt!

Tài liệu, đề thi và đáp án Toán 6