Logo Header
  1. Môn Toán
  2. Giải bài 1 trang 21 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 1 trang 21 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 1 trang 21 Sách bài tập Toán 12 - Chân trời sáng tạo

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 1 trang 21 sách bài tập Toán 12 Chân trời sáng tạo. Bài viết này cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Chúng tôi luôn cập nhật nhanh chóng và chính xác các lời giải bài tập Toán 12, đáp ứng nhu cầu học tập của học sinh trên toàn quốc. Hãy cùng giaitoan.edu.vn khám phá lời giải bài 1 trang 21 ngay sau đây!

Tìm các tiệm cận của đồ thị hàm số sau:

Đề bài

Tìm các tiệm cận của đồ thị hàm số sau:

Giải bài 1 trang 21 sách bài tập toán 12 - Chân trời sáng tạo 1

Phương pháp giải - Xem chi tiếtGiải bài 1 trang 21 sách bài tập toán 12 - Chân trời sáng tạo 2

Dựa vào đồ thị hàm số

Lời giải chi tiết

a) ‒ Đồ thị hàm số có tiệm cận ngang là \(y = - 1\);

‒ Đồ thị hàm số không có tiệm cận đứng.

b) Đồ thị hàm số có

‒ Tiệm cận đứng là \(x = 2\).

‒ Tiệm cận ngang là \(y = 1\).

c) Đồ thị hàm số có

‒ Tiệm cận đứng là \(x = 1\).

‒ Tiệm cận xiên là đường thẳng đi qua \(\left( {2;0} \right)\) và \(\left( {0;2} \right)\) (hay đường thẳng \(y = - x + 2\)).

d) Đồ thị hàm số có tiệm cận xiên là đường thẳng đi qua \(\left( {4;0} \right)\) và \(\left( {0;3} \right)\) (hay đường thẳng \(y = - \frac{3}{4}x + 3\)) và đường thẳng đi qua \(\left( {4;0} \right)\) và \(\left( {0; - 3} \right)\) (hay đường thẳng \(y = \frac{3}{4}x - 3\)).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 1 trang 21 sách bài tập toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục đề toán lớp 12 trên nền tảng toán học. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 1 trang 21 Sách bài tập Toán 12 - Chân trời sáng tạo: Tổng quan

Bài 1 trang 21 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Việc nắm vững kiến thức về đạo hàm là vô cùng quan trọng, không chỉ cho kỳ thi THPT Quốc gia mà còn là nền tảng cho các môn học ở bậc đại học.

Nội dung bài 1 trang 21 Sách bài tập Toán 12 - Chân trời sáng tạo

Bài 1 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số tại một điểm.
  • Tìm đạo hàm của hàm số.
  • Vận dụng đạo hàm để giải các bài toán liên quan đến tiếp tuyến của đồ thị hàm số.
  • Khảo sát hàm số bằng đạo hàm.

Lời giải chi tiết bài 1 trang 21 Sách bài tập Toán 12 - Chân trời sáng tạo

Để giúp các em học sinh hiểu rõ hơn về cách giải bài 1 trang 21, chúng ta sẽ đi vào phân tích từng phần của bài tập. Dưới đây là lời giải chi tiết:

Câu a: (Ví dụ minh họa)

Cho hàm số f(x) = x2 + 2x + 1. Tính f'(1).

Giải:

Ta có f'(x) = 2x + 2. Thay x = 1 vào, ta được f'(1) = 2(1) + 2 = 4.

Câu b: (Ví dụ minh họa)

Tìm đạo hàm của hàm số g(x) = sin(x) + cos(x).

Giải:

Ta có g'(x) = cos(x) - sin(x).

Các lưu ý khi giải bài tập về đạo hàm

Khi giải các bài tập về đạo hàm, các em cần lưu ý những điều sau:

  • Nắm vững các công thức đạo hàm cơ bản.
  • Sử dụng quy tắc đạo hàm của tổng, hiệu, tích, thương một cách linh hoạt.
  • Chú ý đến điều kiện xác định của hàm số.
  • Kiểm tra lại kết quả sau khi giải xong.

Ứng dụng của đạo hàm trong thực tế

Đạo hàm có rất nhiều ứng dụng trong thực tế, ví dụ như:

  • Tính vận tốc và gia tốc trong vật lý.
  • Tìm điểm cực trị của hàm số trong kinh tế.
  • Xây dựng các mô hình toán học trong khoa học kỹ thuật.

Bài tập tương tự

Để rèn luyện thêm kỹ năng giải bài tập về đạo hàm, các em có thể tham khảo các bài tập tương tự sau:

  1. Tính đạo hàm của hàm số h(x) = x3 - 3x2 + 2x.
  2. Tìm đạo hàm của hàm số k(x) = ex + ln(x).

Kết luận

Bài 1 trang 21 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và những lưu ý trên, các em sẽ tự tin hơn khi giải các bài tập tương tự. Chúc các em học tập tốt!

Công thứcĐạo hàm
f(x) = xnf'(x) = nxn-1
f(x) = sin(x)f'(x) = cos(x)
f(x) = cos(x)f'(x) = -sin(x)

Tài liệu, đề thi và đáp án Toán 12