Logo Header
  1. Môn Toán
  2. Giải bài 15 trang 78 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 15 trang 78 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 15 trang 78 Sách bài tập Toán 12 - Chân trời sáng tạo

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 15 trang 78 sách bài tập Toán 12 Chân trời sáng tạo. Bài viết này cung cấp đáp án đầy đủ, phương pháp giải rõ ràng, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Chúng tôi luôn cố gắng cung cấp nội dung chính xác, dễ hiểu và cập nhật mới nhất để hỗ trợ tối đa cho quá trình học tập của bạn.

Cho điểm \(A\left( { - 3;1;2} \right)\) và điểm \(A'\) là điểm đối xứng của \(A\) qua trục \(Oy\). Toạ độ của điểm \(A'\) là A. \(\left( {3; - 1; - 2} \right)\). B. \(\left( {3; - 1;2} \right)\). C. \(\left( {3;1; - 2} \right)\). D. \(\left( { - 3; - 1;2} \right)\).

Đề bài

Cho điểm \(A\left( { - 3;1;2} \right)\) và điểm \(A'\) là điểm đối xứng của \(A\) qua trục \(Oy\). Toạ độ của điểm \(A'\) là

A. \(\left( {3; - 1; - 2} \right)\).

B. \(\left( {3; - 1;2} \right)\).

C. \(\left( {3;1; - 2} \right)\).

D. \(\left( { - 3; - 1;2} \right)\).

Phương pháp giải - Xem chi tiếtGiải bài 15 trang 78 sách bài tập toán 12 - Chân trời sáng tạo 1

Cho điểm \(M\left( {a;b;c} \right)\). \({M_1},{M_2},{M_3}\) lần lượt là điểm đối xứng của điểm \(M\) qua các trục toạ độ \(Ox,Oy,Oz\) thì \({M_1}\left( {a; - b; - c} \right),{M_2}\left( { - a;b; - c} \right),{M_3}\left( { - a; - b;c} \right)\).

Lời giải chi tiết

\(A'\) là điểm đối xứng của \(A\) qua trục \(Oy\) thì \(A'\left( {3;1; - 2} \right)\).

Chọn C.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 15 trang 78 sách bài tập toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục đề toán 12 trên nền tảng đề thi toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 15 trang 78 Sách bài tập Toán 12 - Chân trời sáng tạo: Tổng quan

Bài 15 trang 78 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này tập trung vào việc vận dụng các quy tắc tính đạo hàm của hàm số, đặc biệt là đạo hàm của tổng, hiệu, tích, thương và đạo hàm hàm hợp. Việc nắm vững các quy tắc này là nền tảng quan trọng để giải quyết các bài toán phức tạp hơn trong chương trình Toán 12.

Nội dung chi tiết bài 15 trang 78

Bài 15 bao gồm một số câu hỏi và bài tập khác nhau, yêu cầu học sinh:

  • Tính đạo hàm của các hàm số cho trước.
  • Tìm đạo hàm cấp hai của hàm số.
  • Vận dụng đạo hàm để giải các bài toán liên quan đến tiếp tuyến của đồ thị hàm số.

Hướng dẫn giải chi tiết từng bài tập

Bài 15.1 Trang 78 Sách bài tập Toán 12 Chân trời sáng tạo

Đề bài: Tính đạo hàm của hàm số f(x) = 3x4 - 2x2 + 5.

Giải:

Áp dụng quy tắc đạo hàm của tổng, hiệu và lũy thừa, ta có:

f'(x) = 12x3 - 4x

Bài 15.2 Trang 78 Sách bài tập Toán 12 Chân trời sáng tạo

Đề bài: Tính đạo hàm của hàm số g(x) = (x2 + 1)(x - 2).

Giải:

Sử dụng quy tắc đạo hàm của tích, ta có:

g'(x) = (2x)(x - 2) + (x2 + 1)(1) = 2x2 - 4x + x2 + 1 = 3x2 - 4x + 1

Bài 15.3 Trang 78 Sách bài tập Toán 12 Chân trời sáng tạo

Đề bài: Tính đạo hàm của hàm số h(x) = sin(2x).

Giải:

Áp dụng quy tắc đạo hàm của hàm hợp, ta có:

h'(x) = cos(2x) * 2 = 2cos(2x)

Các lưu ý khi giải bài tập về đạo hàm

Để giải bài tập về đạo hàm một cách hiệu quả, bạn cần:

  • Nắm vững các quy tắc tính đạo hàm cơ bản.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Kiểm tra lại kết quả sau khi tính toán.
  • Sử dụng các công cụ hỗ trợ như máy tính bỏ túi hoặc phần mềm giải toán để kiểm tra lại đáp án.

Ứng dụng của đạo hàm trong thực tế

Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:

  • Tính vận tốc và gia tốc của vật chuyển động.
  • Tìm cực trị của hàm số.
  • Giải các bài toán tối ưu hóa.
  • Phân tích sự thay đổi của các đại lượng trong các lĩnh vực khác nhau như kinh tế, khoa học tự nhiên, kỹ thuật,...

Tổng kết

Bài 15 trang 78 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và hướng dẫn giải bài tập trên đây, các bạn học sinh sẽ tự tin hơn trong việc giải các bài toán về đạo hàm và đạt kết quả tốt trong môn Toán 12.

Bảng tổng hợp các quy tắc đạo hàm cơ bản

Quy tắcCông thức
Đạo hàm của hằng số(c)' = 0
Đạo hàm của xn(xn)' = nxn-1
Đạo hàm của tổng/hiệu(u ± v)' = u' ± v'
Đạo hàm của tích(uv)' = u'v + uv'
Đạo hàm của thương(u/v)' = (u'v - uv')/v2
Đạo hàm của hàm hợp(f(g(x)))' = f'(g(x)) * g'(x)

Tài liệu, đề thi và đáp án Toán 12