Logo Header
  1. Môn Toán
  2. Giải bài 1 trang 54 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 1 trang 54 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 1 trang 54 Sách bài tập Toán 12 - Chân trời sáng tạo

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 1 trang 54 sách bài tập Toán 12 Chân trời sáng tạo. Bài viết này cung cấp phương pháp giải bài tập một cách rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin làm bài tập.

Chúng tôi luôn cập nhật nhanh chóng và chính xác các lời giải bài tập Toán 12, đáp ứng nhu cầu học tập của học sinh trên toàn quốc.

Cho đường thẳng (d) có phương trình tham số (left{ begin{array}{l}x = 7 + 5t\y = 3 + 11t\z = 9 - 6tend{array} right.). Tìm một điểm trên (d) và một vectơ chỉ phương của (d).

Đề bài

Cho đường thẳng \(d\) có phương trình tham số \(\left\{ \begin{array}{l}x = 7 + 5t\\y = 3 + 11t\\z = 9 - 6t\end{array} \right.\).

Tìm một điểm trên \(d\) và một vectơ chỉ phương của \(d\).

Phương pháp giải - Xem chi tiếtGiải bài 1 trang 54 sách bài tập toán 12 - Chân trời sáng tạo 1

Đường thẳng \(\left\{ \begin{array}{l}x = {x_0} + at\\y = {y_0} + bt\\z = {z_0} + ct\end{array} \right.\) đi qua điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) có vectơ chỉ phương \(\overrightarrow u = \left( {a;b;c} \right)\).

Lời giải chi tiết

Đường thẳng \(d:\left\{ \begin{array}{l}x = 7 + 5t\\y = 3 + 11t\\z = 9 - 6t\end{array} \right.\) đi qua điểm \(M\left( {7;3;9} \right)\) có vectơ chỉ phương \(\overrightarrow u = \left( {5;11; - 6} \right)\).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 1 trang 54 sách bài tập toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục toán 12 trên nền tảng tài liệu toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 1 trang 54 Sách bài tập Toán 12 - Chân trời sáng tạo: Tổng quan

Bài 1 trang 54 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Việc nắm vững các công thức đạo hàm cơ bản và kỹ năng tính đạo hàm là yếu tố then chốt để hoàn thành bài tập này.

Nội dung bài tập

Bài 1 trang 54 sách bài tập Toán 12 Chân trời sáng tạo thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số tại một điểm.
  • Tìm đạo hàm của hàm số.
  • Vận dụng đạo hàm để giải các bài toán liên quan đến tốc độ thay đổi, cực trị của hàm số.

Phương pháp giải bài tập

Để giải bài 1 trang 54 sách bài tập Toán 12 Chân trời sáng tạo hiệu quả, bạn có thể áp dụng các phương pháp sau:

  1. Xác định đúng công thức đạo hàm cần sử dụng: Tùy thuộc vào dạng hàm số, bạn cần chọn công thức đạo hàm phù hợp.
  2. Thực hiện các phép tính đạo hàm một cách cẩn thận: Tránh sai sót trong quá trình tính toán.
  3. Kiểm tra lại kết quả: Đảm bảo kết quả đạo hàm của bạn là chính xác.
  4. Vận dụng đạo hàm vào giải quyết bài toán: Sử dụng đạo hàm để tìm ra lời giải cho bài toán.

Lời giải chi tiết bài 1 trang 54

Bài 1: (Sách bài tập Toán 12 Chân trời sáng tạo)

(Giả sử đây là nội dung bài tập cụ thể, ví dụ: Tính đạo hàm của hàm số f(x) = x^2 + 2x - 1 tại x = 1)

Lời giải:

Ta có f'(x) = 2x + 2. Thay x = 1 vào, ta được f'(1) = 2(1) + 2 = 4.

Vậy, đạo hàm của hàm số f(x) tại x = 1 là 4.

Các dạng bài tập tương tự và cách giải

Ngoài bài 1 trang 54, sách bài tập Toán 12 Chân trời sáng tạo còn có nhiều bài tập tương tự về đạo hàm. Để giải các bài tập này, bạn cần nắm vững các kiến thức sau:

  • Đạo hàm của hàm số đơn thức: f(x) = x^n => f'(x) = nx^(n-1)
  • Đạo hàm của tổng, hiệu, tích, thương của các hàm số: Áp dụng các quy tắc đạo hàm tương ứng.
  • Đạo hàm của hàm hợp: Sử dụng quy tắc đạo hàm hàm hợp.

Luyện tập thêm

Để củng cố kiến thức về đạo hàm và rèn luyện kỹ năng giải bài tập, bạn có thể tham khảo thêm các bài tập sau:

  • Bài 2, 3, 4 trang 54 sách bài tập Toán 12 Chân trời sáng tạo
  • Các bài tập về đạo hàm trong các đề thi thử Toán 12

Kết luận

Bài 1 trang 54 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh hiểu rõ hơn về đạo hàm và ứng dụng của đạo hàm trong giải quyết các bài toán thực tế. Hy vọng với lời giải chi tiết và phương pháp giải bài tập mà Giaitoan.edu.vn cung cấp, bạn sẽ tự tin hơn trong việc học tập môn Toán 12.

Bảng tổng hợp công thức đạo hàm cơ bản

Hàm số f(x)Đạo hàm f'(x)
C (hằng số)0
x^nnx^(n-1)
sin xcos x
cos x-sin x
tan x1/cos^2 x

Tài liệu, đề thi và đáp án Toán 12