Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài tập 5 trang 80 sách bài tập Toán 12 - Chân trời sáng tạo. Bài viết này sẽ giúp học sinh hiểu rõ phương pháp giải và áp dụng vào các bài tập tương tự.
Chúng tôi luôn cố gắng cung cấp những lời giải chính xác, dễ hiểu và phù hợp với chương trình học Toán 12 hiện hành.
Cho hai biến cố (A,B) có (Pleft( {overline A B} right) = 0,2;Pleft( {AB} right) = 0,3) và (Pleft( {Aoverline B } right) = 0,4). Tính (Pleft( {A|B} right);Pleft( {A|overline B } right);Pleft( {overline A |B} right);Pleft( {overline A |overline B } right)).
Đề bài
Cho hai biến cố \(A,B\) có \(P\left( {\overline A B} \right) = 0,2;P\left( {AB} \right) = 0,3\) và \(P\left( {A\overline B } \right) = 0,4\).
Tính \(P\left( {A|B} \right);P\left( {A|\overline B } \right);P\left( {\overline A |B} \right);P\left( {\overline A |\overline B } \right)\).
Phương pháp giải - Xem chi tiết
‒ Sử dụng quy tắc cộng xác suất: Nếu \(A\) và \(B\) là hai biến cố xung khắc thì \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right)\).
‒ Sử dụng công thức tính xác suất của \(A\) với điều kiện \(B\): \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}}\).
Lời giải chi tiết
Vì \(\overline A B\) và \(AB\) là hai biến cố xung khắc và \(AB \cup \overline A B = B\) nên theo tính chất của xác suất, ta có \(P\left( B \right) = P\left( {\overline A B} \right) + P\left( {AB} \right) = 0,2 + 0,3 = 0,5\).
Ta có: \(P\left( {\overline B } \right) = 1 - P\left( B \right) = 1 - 0,5 = 0,5\).
Theo công thức tính xác suất có điều kiện ta có:
\(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{0,3}}{{0,5}} = 0,6;P\left( {A|\overline B } \right) = \frac{{P\left( {A\overline B } \right)}}{{P\left( {\overline B } \right)}} = \frac{{0,4}}{{0,5}} = 0,8\).
Do \(\overline A |B\) và \(A|B\) là hai biến cố đối nên ta có: \(P\left( {\overline A |B} \right) = 1 - P\left( {A|B} \right) = 1 - 0,6 = 0,4\).
Do \(\overline A |\overline B \) và \(A|\overline B \) là hai biến cố đối nên ta có: \(P\left( {\overline A |\overline B } \right) = 1 - P\left( {A|\overline B } \right) = 1 - 0,8 = 0,2\).
Bài tập 5 trang 80 sách bài tập Toán 12 - Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Việc nắm vững các công thức đạo hàm cơ bản và kỹ năng tính đạo hàm là yếu tố then chốt để hoàn thành bài tập này một cách hiệu quả.
Bài tập 5 thường bao gồm các dạng bài sau:
Để giúp các em học sinh hiểu rõ hơn về cách giải bài tập 5 trang 80, chúng ta sẽ đi vào phân tích từng phần của bài tập.
Để tính đạo hàm của hàm số tại một điểm, ta sử dụng công thức:
f'(x0) = limh→0 (f(x0 + h) - f(x0)) / h
Trong đó:
Ví dụ, cho hàm số f(x) = x2. Tính đạo hàm của hàm số tại điểm x = 2.
Giải:
f'(2) = limh→0 ((2 + h)2 - 22) / h = limh→0 (4 + 4h + h2 - 4) / h = limh→0 (4h + h2) / h = limh→0 (4 + h) = 4
Vậy, đạo hàm của hàm số f(x) = x2 tại điểm x = 2 là 4.
Để tìm đạo hàm của hàm số, ta sử dụng các công thức đạo hàm cơ bản và quy tắc đạo hàm.
Ví dụ, tìm đạo hàm của hàm số f(x) = 3x3 + 2x2 - 5x + 1.
Giải:
f'(x) = 9x2 + 4x - 5
Đạo hàm có nhiều ứng dụng trong thực tế, ví dụ như:
Ví dụ, một vật chuyển động theo phương trình s(t) = t2 + 2t. Tính vận tốc của vật tại thời điểm t = 3.
Giải:
Vận tốc của vật là đạo hàm của phương trình chuyển động: v(t) = s'(t) = 2t + 2
Tại thời điểm t = 3, vận tốc của vật là: v(3) = 2(3) + 2 = 8
Bài tập 5 trang 80 sách bài tập Toán 12 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và những lưu ý trên, các em học sinh sẽ tự tin hơn khi giải bài tập này và đạt kết quả tốt trong môn Toán 12.