Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12 sách Chân trời sáng tạo. Bài viết này sẽ hướng dẫn bạn giải bài 7 trang 64 một cách đầy đủ và chính xác.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của chúng tôi đã biên soạn lời giải chi tiết, kèm theo các bước giải rõ ràng, giúp bạn nắm vững kiến thức và kỹ năng giải toán.
Một tàu kéo một xà lan trên biển di chuyển được 3 km với một lực kéo có cường độ 2000 N và có phương hợp với phương dịch chuyển một góc ({30^ circ }). Tính công thực hiện bởi lực kéo nói trên (kết quả làm tròn đến hàng đơn vị của Jun).
Đề bài
Một tàu kéo một xà lan trên biển di chuyển được 3 km với một lực kéo có cường độ 2000 N và có phương hợp với phương dịch chuyển một góc \({30^ \circ }\). Tính công thực hiện bởi lực kéo nói trên (kết quả làm tròn đến hàng đơn vị của Jun).
Phương pháp giải - Xem chi tiết
‒ Sử dụng công thức tính công: \(A = \overrightarrow F .\overrightarrow d \), với công được tính theo đơn vị J, tương ứng là lực F đơn vị N và khoảng di chuyển d đơn vị m).
‒ Sử dụng tích vô hướng của hai vectơ: \(\overrightarrow a .\overrightarrow b = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow a ,\overrightarrow b } \right)\).
Lời giải chi tiết
Áp dụng công thức tính công, ta có:
\(A = \overrightarrow F .\overrightarrow d = \left| {\overrightarrow F } \right|.\left| {\overrightarrow d } \right|.\cos \left( {\overrightarrow F ,\overrightarrow d } \right) = 2000.3000.\cos {30^ \circ } \approx 5196152\left( J \right)\).
Bài 7 trang 64 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của các hàm số cơ bản, kết hợp với các quy tắc đạo hàm của tổng, hiệu, tích, thương và hàm hợp. Việc nắm vững các quy tắc này là nền tảng để giải quyết các bài toán phức tạp hơn trong chương trình học.
Bài 7 thường bao gồm các dạng bài tập sau:
Để giải bài 7 trang 64 hiệu quả, bạn cần:
Ví dụ 1: Tính đạo hàm của hàm số f(x) = 3x2 + 2x - 1 tại x = 2.
Giải:
f'(x) = 6x + 2
f'(2) = 6(2) + 2 = 14
Vậy, đạo hàm của hàm số f(x) tại x = 2 là 14.
Ví dụ 2: Tìm đạo hàm của hàm số g(x) = sin(x) * cos(x).
Giải:
g'(x) = (sin(x))' * cos(x) + sin(x) * (cos(x))'
g'(x) = cos(x) * cos(x) + sin(x) * (-sin(x))
g'(x) = cos2(x) - sin2(x)
Vậy, đạo hàm của hàm số g(x) là cos2(x) - sin2(x).
Khi giải bài 7 trang 64, bạn cần chú ý:
Để củng cố kiến thức, bạn có thể tự giải các bài tập sau:
Bài 7 trang 64 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp bạn rèn luyện kỹ năng tính đạo hàm. Bằng cách nắm vững các quy tắc đạo hàm, phân tích kỹ đề bài và thực hiện các phép biến đổi đại số cẩn thận, bạn có thể giải quyết bài tập này một cách hiệu quả. Chúc bạn học tốt!