Logo Header
  1. Môn Toán
  2. Giải bài 11 trang 35 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 11 trang 35 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 11 trang 35 Sách bài tập Toán 12 - Chân trời sáng tạo

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 11 trang 35 Sách bài tập Toán 12 - Chân trời sáng tạo. Bài viết này cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Chúng tôi luôn cập nhật nhanh chóng và chính xác các lời giải bài tập Toán 12, đáp ứng nhu cầu học tập của học sinh trên toàn quốc.

Chọn đúng hoặc sai cho mỗi ý a, b, c, d. Cho hàm số (y = 2{x^3} - 5{x^2} - 24x - 18). a) Hàm số có hai cực trị. b) Hàm số đạt cực đại tại (x = - frac{4}{3}), giá trị cực đại là (frac{{10}}{{27}}). c) Hàm số đồng biến trong khoảng (left( {3; + infty } right)). d) Hàm số đồng biển trong khoảng (left( { - frac{4}{3};3} right)).

Đề bài

Chọn đúng hoặc sai cho mỗi ý a, b, c, d.Cho hàm số \(y = 2{x^3} - 5{x^2} - 24x - 18\). a) Hàm số có hai cực trị. b) Hàm số đạt cực đại tại \(x = - \frac{4}{3}\), giá trị cực đại là \(\frac{{10}}{{27}}\).c) Hàm số đồng biến trong khoảng \(\left( {3; + \infty } \right)\). d) Hàm số đồng biển trong khoảng \(\left( { - \frac{4}{3};3} \right)\).

Phương pháp giải - Xem chi tiếtGiải bài 11 trang 35 sách bài tập toán 12 - Chân trời sáng tạo 1

Các bước để xét tính đơn điệu và tìm cực trị của hàm số \(f\left( x \right)\):

Bước 1. Tìm tập xác định \(D\) của hàm số.

Bước 2. Tính đạo hàm \(f'\left( x \right)\) của hàm số. Tìm các điểm \({x_1},{x_2},...,{x_n} \in D\) mà tại đó đạo hàm \(f'\left( x \right)\) bằng 0 hoặc không tồn tại.

Bước 3. Sắp xếp các điểm \({x_1},{x_2},...,{x_n}\) theo thứ tự tăng dần, xét dấu \(f'\left( x \right)\) và lập bảng biến thiên.

Bước 4. Nêu kết luận về các khoảng đồng biến, nghịch biến, cực trị của hàm số.

Lời giải chi tiết

Xét hàm số \(y = 2{x^3} - 5{x^2} - 24x - 18\).

Tập xác định: \(D = \mathbb{R}\).

Ta có \(y' = 6{x^2} - 10x - 24;y' = 0 \Leftrightarrow x = 3\) hoặc \({\rm{x}} = - \frac{4}{3}\).

Bảng biến thiên:

Giải bài 11 trang 35 sách bài tập toán 12 - Chân trời sáng tạo 2

Hàm số đồng biến trên các khoảng \(\left( { - \infty ; - \frac{4}{3}} \right)\) và \(\left( {3; + \infty } \right)\), nghịch biến trên khoảng \(\left( { - \frac{4}{3};3} \right)\).

Hàm số đạt cực đại tại $x=-\frac{4}{3},{{y}_{CĐ}}=\frac{10}{27}$; hàm số đạt cực tiểu tại \(x = 3,{y_{CT}} = - 81\).

a) Đ.

b) Đ.

c) Đ.

d) S.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 11 trang 35 sách bài tập toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục đề toán 12 trên nền tảng tài liệu toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 11 trang 35 Sách bài tập Toán 12 - Chân trời sáng tạo: Tổng quan

Bài 11 trang 35 Sách bài tập Toán 12 - Chân trời sáng tạo thuộc chương trình học Toán 12, tập trung vào việc vận dụng các kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm về đạo hàm, quy tắc tính đạo hàm và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.

Nội dung chi tiết bài 11 trang 35

Bài 11 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Tìm đạo hàm của hàm số.
  • Dạng 2: Giải phương trình, bất phương trình sử dụng đạo hàm.
  • Dạng 3: Khảo sát hàm số bằng đạo hàm (xác định cực trị, khoảng đơn điệu).
  • Dạng 4: Ứng dụng đạo hàm để giải các bài toán tối ưu hóa.

Lời giải chi tiết bài 11 trang 35 (Ví dụ)

(Giả sử bài 11 là một bài toán về khảo sát hàm số)

Đề bài: Khảo sát hàm số y = x3 - 3x2 + 2

  1. Xác định tập xác định: Hàm số xác định trên R.
  2. Tính đạo hàm cấp nhất: y' = 3x2 - 6x
  3. Tìm điểm dừng: y' = 0 ⇔ 3x2 - 6x = 0 ⇔ x = 0 hoặc x = 2
  4. Lập bảng biến thiên:
    x-∞02+∞
    y'+-+
    y
  5. Kết luận: Hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞), nghịch biến trên khoảng (0; 2). Hàm số đạt cực đại tại x = 0, giá trị cực đại là y = 2. Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là y = -2.

Mẹo giải bài tập đạo hàm hiệu quả

Để giải tốt các bài tập về đạo hàm, bạn cần:

  • Nắm vững các công thức tính đạo hàm cơ bản.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng các quy tắc tính đạo hàm một cách linh hoạt.
  • Kiểm tra lại kết quả sau khi giải xong.

Tài liệu tham khảo hữu ích

Ngoài sách giáo khoa và sách bài tập, bạn có thể tham khảo thêm các tài liệu sau:

  • Các trang web học Toán online uy tín như giaitoan.edu.vn.
  • Các video bài giảng về đạo hàm trên YouTube.
  • Các diễn đàn, nhóm học tập Toán học trên mạng xã hội.

Kết luận

Bài 11 trang 35 Sách bài tập Toán 12 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và rèn luyện kỹ năng giải toán. Hy vọng với lời giải chi tiết và các mẹo giải bài tập hiệu quả mà giaitoan.edu.vn cung cấp, bạn sẽ tự tin hơn trong quá trình học tập.

Tài liệu, đề thi và đáp án Toán 12