Logo Header
  1. Môn Toán
  2. Giải bài 3 trang 22 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 3 trang 22 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 3 trang 22 Sách bài tập Toán 12 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài 3 trang 22 sách bài tập Toán 12 chương trình Chân trời sáng tạo một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và dễ tiếp thu nhất.

Tìm các tiệm cận của đồ thị hàm số sau: a) (y = 2{rm{x}} + 1 + frac{1}{{x - 3}}); b) (y = frac{{ - 3{{rm{x}}^2} + 16{rm{x}} - 3}}{{x - 5}}); c) (y = frac{{ - 6{x^2} + 7{rm{x}} + 1}}{{3{rm{x}} + 1}}).

Đề bài

Tìm các tiệm cận của đồ thị hàm số sau:

a) \(y = 2{\rm{x}} + 1 + \frac{1}{{x - 3}}\);

b) \(y = \frac{{ - 3{{\rm{x}}^2} + 16{\rm{x}} - 3}}{{x - 5}}\);

c) \(y = \frac{{ - 6{x^2} + 7{\rm{x}} + 1}}{{3{\rm{x}} + 1}}\).

Phương pháp giải - Xem chi tiếtGiải bài 3 trang 22 sách bài tập toán 12 - Chân trời sáng tạo 1

‒ Tìm tiệm cận đứng: Tính \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right)\) hoặc \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right)\), nếu một trong các giới hạn sau thoả mãn:

\(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = - \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = - \infty \)

thì đường thẳng \(x = {x_0}\) là đường tiệm cận đứng.

‒ Tìm tiệm cận xiên \(y = ax + b\left( {a \ne 0} \right)\):

\(a = \mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right)}}{x}\) và \(b = \mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) - ax} \right]\) hoặc

\(a = \mathop {\lim }\limits_{x \to - \infty } \frac{{f\left( x \right)}}{x}\) và \(b = \mathop {\lim }\limits_{x \to - \infty } \left[ {f\left( x \right) - ax} \right]\)

Lời giải chi tiết

a) Tập xác định: \(D = \mathbb{R}\backslash \left\{ 3 \right\}\).

Ta có:

• \(\mathop {\lim }\limits_{x \to {3^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {3^ - }} \left( {2{\rm{x}} + 1 + \frac{1}{{x - 3}}} \right) = - \infty ;\mathop {\lim }\limits_{x \to {3^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {3^ + }} \left( {2{\rm{x}} + 1 + \frac{1}{{x - 3}}} \right) = + \infty \)

Vậy \({\rm{x}} = 3\) là tiệm cận đứng của đồ thị hàm số đã cho.

• \(y = 2{\rm{x}} + 1 + \frac{1}{{x - 3}} = \frac{{2{{\rm{x}}^2} - 5{\rm{x}} - 2}}{{x - 3}}\)

\(a = \mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right)}}{x} = \mathop {\lim }\limits_{x \to + \infty } \frac{{2{{\rm{x}}^2} - 5{\rm{x}} - 2}}{{x\left( {x - 3} \right)}} = 2\) và

\(b = \mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) - 2x} \right] = \mathop {\lim }\limits_{x \to + \infty } \left[ {\frac{{2{{\rm{x}}^2} - 5{\rm{x}} - 2}}{{x - 3}} - 2x} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{{x - 2}}{{x - 3}} = 1\)

Vậy đường thẳng \(y = 2{\rm{x}} + 1\) là tiệm cận xiên của đồ thị hàm số đã cho.

b) Tập xác định: \(D = \mathbb{R}\backslash \left\{ 5 \right\}\).

Ta có:

• \(\mathop {\lim }\limits_{x \to {5^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {5^ - }} \frac{{ - 3{{\rm{x}}^2} + 16{\rm{x}} - 3}}{{x - 5}} = - \infty ;\mathop {\lim }\limits_{x \to {5^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {5^ + }} \frac{{ - 3{{\rm{x}}^2} + 16{\rm{x}} - 3}}{{x - 5}} = + \infty \)

Vậy \({\rm{x}} = 5\) là tiệm cận đứng của đồ thị hàm số đã cho.

• \(a = \mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right)}}{x} = \mathop {\lim }\limits_{x \to + \infty } \frac{{ - 3{{\rm{x}}^2} + 16{\rm{x}} - 3}}{{x\left( {x - 5} \right)}} = - 3\) và

\(b = \mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) + 3x} \right] = \mathop {\lim }\limits_{x \to + \infty } \left[ {\frac{{ - 3{{\rm{x}}^2} + 16{\rm{x}} - 3}}{{x - 5}} + 3x} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{{x - 3}}{{x - 5}} = 1\)

Vậy đường thẳng \(y = - 3{\rm{x}} + 1\) là tiệm cận xiên của đồ thị hàm số đã cho.

c) Tập xác định: \(D = \mathbb{R}\backslash \left\{ { - \frac{1}{3}} \right\}\).

Ta có:

• \(\mathop {\lim }\limits_{x \to - {{\frac{1}{3}}^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {{\frac{1}{3}}^ - }} \frac{{ - 6{x^2} + 7{\rm{x}} + 1}}{{3{\rm{x}} + 1}} = + \infty ;\mathop {\lim }\limits_{x \to - {{\frac{1}{3}}^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {{\frac{1}{3}}^ + }} \frac{{ - 6{x^2} + 7{\rm{x}} + 1}}{{3{\rm{x}} + 1}} = - \infty \)

Vậy \({\rm{x}} = - \frac{1}{3}\) là tiệm cận đứng của đồ thị hàm số đã cho.

• \(a = \mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right)}}{x} = \mathop {\lim }\limits_{x \to + \infty } \frac{{ - 6{x^2} + 7{\rm{x}} + 1}}{{x\left( {3{\rm{x}} + 1} \right)}} = - 2\) và

\(b = \mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) + 2x} \right] = \mathop {\lim }\limits_{x \to + \infty } \left[ {\frac{{ - 6{x^2} + 7{\rm{x}} + 1}}{{3{\rm{x}} + 1}} + 2x} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{{9{\rm{x}} + 1}}{{3{\rm{x}} + 1}} = 3\)

Vậy đường thẳng \(y = - 2{\rm{x}} + 3\) là tiệm cận xiên của đồ thị hàm số đã cho.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 3 trang 22 sách bài tập toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục bài toán lớp 12 trên nền tảng môn toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 3 trang 22 Sách bài tập Toán 12 - Chân trời sáng tạo: Tổng quan

Bài 3 trang 22 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, quy tắc tính đạo hàm, và ứng dụng của đạo hàm để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và kỹ năng giải bài tập là rất quan trọng để đạt kết quả tốt trong môn Toán 12.

Nội dung bài 3 trang 22 Sách bài tập Toán 12 - Chân trời sáng tạo

Bài 3 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của các hàm số đơn thức, đa thức, và các hàm số phức tạp hơn.
  • Áp dụng quy tắc tính đạo hàm: Vận dụng các quy tắc như quy tắc cộng, trừ, nhân, chia, quy tắc hàm hợp để tính đạo hàm.
  • Giải phương trình đạo hàm: Tìm nghiệm của phương trình đạo hàm để xác định các điểm cực trị, điểm uốn của hàm số.
  • Ứng dụng đạo hàm: Sử dụng đạo hàm để giải các bài toán liên quan đến tối ưu hóa, tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số.

Hướng dẫn giải chi tiết bài 3 trang 22 Sách bài tập Toán 12 - Chân trời sáng tạo

Để giải bài 3 trang 22 sách bài tập Toán 12 Chân trời sáng tạo một cách hiệu quả, bạn cần thực hiện theo các bước sau:

  1. Đọc kỹ đề bài: Xác định rõ yêu cầu của bài toán, các dữ kiện đã cho, và các điều kiện ràng buộc.
  2. Xác định kiến thức cần sử dụng: Xác định các kiến thức về đạo hàm, quy tắc tính đạo hàm, và ứng dụng của đạo hàm cần sử dụng để giải bài toán.
  3. Lập kế hoạch giải: Xác định các bước cần thực hiện để giải bài toán, từ việc biến đổi biểu thức đến việc tính toán và kết luận.
  4. Thực hiện giải bài: Thực hiện các bước đã lập kế hoạch, chú ý đến việc trình bày lời giải một cách rõ ràng, logic và dễ hiểu.
  5. Kiểm tra lại kết quả: Kiểm tra lại kết quả để đảm bảo tính chính xác và hợp lý.

Ví dụ minh họa giải bài 3 trang 22 Sách bài tập Toán 12 - Chân trời sáng tạo

Ví dụ: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.

Giải:

f'(x) = 3x2 + 4x - 5

Mẹo giải bài tập đạo hàm hiệu quả

  • Nắm vững các công thức đạo hàm cơ bản: Việc nắm vững các công thức đạo hàm cơ bản là rất quan trọng để tính đạo hàm một cách nhanh chóng và chính xác.
  • Luyện tập thường xuyên: Việc luyện tập thường xuyên sẽ giúp bạn làm quen với các dạng bài tập khác nhau và rèn luyện kỹ năng giải bài tập.
  • Sử dụng các công cụ hỗ trợ: Bạn có thể sử dụng các công cụ hỗ trợ như máy tính bỏ túi, phần mềm giải toán để kiểm tra lại kết quả và tìm kiếm các lời giải khác.
  • Tham khảo các tài liệu học tập: Bạn có thể tham khảo các tài liệu học tập như sách giáo khoa, sách bài tập, các trang web học toán để tìm hiểu thêm về kiến thức và kỹ năng giải bài tập.

Tài liệu tham khảo hữu ích

Để học tập và ôn luyện môn Toán 12 hiệu quả, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 12 Chân trời sáng tạo
  • Sách bài tập Toán 12 Chân trời sáng tạo
  • Các trang web học toán uy tín như giaitoan.edu.vn, VietJack, Hoc24,...

Kết luận

Hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài 3 trang 22 sách bài tập Toán 12 Chân trời sáng tạo một cách hiệu quả. Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán 12!

Tài liệu, đề thi và đáp án Toán 12