Logo Header
  1. Môn Toán
  2. Giải bài 5 trang 97 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 5 trang 97 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 5 trang 97 Sách bài tập Toán 12 - Chân trời sáng tạo

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 5 trang 97 sách bài tập Toán 12 Chân trời sáng tạo. Bài viết này cung cấp đáp án, phương pháp giải và giải thích rõ ràng từng bước để giúp học sinh hiểu bài và làm bài tập một cách hiệu quả.

Chúng tôi luôn cố gắng cung cấp nội dung chính xác, dễ hiểu và cập nhật mới nhất để hỗ trợ tối đa cho quá trình học tập của bạn.

Kết quả khảo sát cân nặng của 80 con tôm càng xanh 5 tháng tuổi ở một khu nuôi tôm được biểu diễn ở biểu đồ tần số dưới đây. a) Hãy lập bảng tần số ghép nhóm cho mẫu số liệu trên. b) Hãy tìm khoảng biến thiên, khoảng tứ phân vị của mẫu số liệu ghép nhóm trên.

Đề bài

Kết quả khảo sát cân nặng của 80 con tôm càng xanh 5 tháng tuổi ở một khu nuôi tôm được biểu diễn ở biểu đồ tần số dưới đây.

Giải bài 5 trang 97 sách bài tập toán 12 - Chân trời sáng tạo 1

a) Hãy lập bảng tần số ghép nhóm cho mẫu số liệu trên.

b) Hãy tìm khoảng biến thiên, khoảng tứ phân vị của mẫu số liệu ghép nhóm trên.

Phương pháp giải - Xem chi tiếtGiải bài 5 trang 97 sách bài tập toán 12 - Chân trời sáng tạo 2

‒ Sử dụng công thức tính khoảng biến thiên của mẫu số liệu ghép nhóm: \(R = {a_{m + 1}} - {a_1}\).

‒ Sử dụng công thức tính các tứ phân vị của mẫu số liệu ghép nhóm:

Tứ phân vị thứ \(k\) được xác định như sau: \({Q_k} = {u_m} + \frac{{\frac{{kn}}{4} - C}}{{{n_m}}}\left( {{u_{m + 1}} - {u_m}} \right)\)

trong đó:

• \(n = {n_1} + {n_2} + ... + {n_k}\) là cỡ mẫu;

• \(\left[ {{u_m};{u_{m + 1}}} \right)\) là nhóm chứa tứ phân vị thứ \(k\);

• \({n_m}\) là tần số của nhóm chứa tứ phân vị thứ \(k\);

• \(C = {n_1} + {n_2} + ... + {n_{m - 1}}\).

‒ Sử dụng công thức tính khoảng tứ phân vị của mẫu số liệu ghép nhóm: \(\Delta Q = {Q_3} - {Q_1

Lời giải chi tiết

a) Bảng tần số ghép nhóm:

Giải bài 5 trang 97 sách bài tập toán 12 - Chân trời sáng tạo 3

b) Khoảng biến thiên của mẫu số liệu ghép nhóm đó là: \(R = 100 - 60 = 40\) (g).

Gọi \({x_1};{x_2};...;{x_{80}}\) là mẫu số liệu gốc gồm cân nặng của 80 con tôm càng xanh 5 tháng tuổi theo thứ tự không giảm.

Tứ phân vị thứ nhất của mẫu số liệu gốc là \(\frac{1}{2}\left( {{x_{20}} + {x_{21}}} \right) \in \left[ {70;80} \right)\). Do đó tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:

\({Q_1} = 70 + \frac{{\frac{{1.80}}{4} - 10}}{{20}}\left( {80 - 70} \right) = 75\)

Tứ phân vị thứ ba của mẫu số liệu gốc là \(\frac{1}{2}\left( {{x_{60}} + {x_{61}}} \right) \in \left[ {90;100} \right)\). Do đó tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:

\({Q_3} = 90 + \frac{{\frac{{3.80}}{4} - \left( {10 + 20 + 30} \right)}}{{20}}\left( {100 - 90} \right) = 90\)

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \(\Delta Q = {Q_3} - {Q_1} = 90 - 75 = 15\) (g).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 5 trang 97 sách bài tập toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục đề toán 12 trên nền tảng toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 5 trang 97 Sách bài tập Toán 12 - Chân trời sáng tạo: Tổng quan

Bài 5 trang 97 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của các hàm số cơ bản, hàm hợp và các hàm lượng giác. Việc nắm vững kiến thức về đạo hàm là vô cùng quan trọng, không chỉ cho kỳ thi THPT Quốc gia mà còn là nền tảng cho các môn học nâng cao ở bậc đại học.

Nội dung bài tập

Bài 5 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số tại một điểm cho trước.
  • Tìm đạo hàm của hàm số.
  • Xác định các hệ số trong hàm số dựa trên đạo hàm.
  • Ứng dụng đạo hàm để giải các bài toán liên quan đến tiếp tuyến của đồ thị hàm số.

Lời giải chi tiết bài 5 trang 97

Để giải bài 5 trang 97 sách bài tập Toán 12 Chân trời sáng tạo, chúng ta cần thực hiện các bước sau:

  1. Xác định hàm số: Đọc kỹ đề bài để xác định chính xác hàm số cần tính đạo hàm.
  2. Áp dụng quy tắc tính đạo hàm: Sử dụng các quy tắc tính đạo hàm đã học, bao gồm:

    • Đạo hàm của hàm số lũy thừa: (xn)' = nxn-1
    • Đạo hàm của hàm số lượng giác: (sin x)' = cos x, (cos x)' = -sin x, (tan x)' = 1/cos2x
    • Đạo hàm của hàm hợp: (f(g(x)))' = f'(g(x)) * g'(x)
    • Đạo hàm của tổng, hiệu, tích, thương của các hàm số.
  3. Rút gọn biểu thức: Sau khi tính đạo hàm, cần rút gọn biểu thức để có kết quả cuối cùng.
  4. Kiểm tra lại kết quả: Đảm bảo rằng kết quả đạo hàm phù hợp với hàm số ban đầu và các quy tắc đã sử dụng.

Ví dụ minh họa

Bài tập: Tính đạo hàm của hàm số f(x) = 2x3 - 5x2 + 3x - 1.

Lời giải:

f'(x) = (2x3)' - (5x2)' + (3x)' - (1)'

f'(x) = 6x2 - 10x + 3 - 0

f'(x) = 6x2 - 10x + 3

Mẹo giải nhanh

Để giải nhanh các bài tập về đạo hàm, bạn nên:

  • Nắm vững các quy tắc tính đạo hàm cơ bản.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng máy tính bỏ túi có chức năng tính đạo hàm để kiểm tra kết quả.
  • Phân tích cấu trúc của hàm số để chọn phương pháp tính đạo hàm phù hợp.

Tài liệu tham khảo

Ngoài sách bài tập, bạn có thể tham khảo thêm các tài liệu sau để học tốt môn Toán 12:

  • Sách giáo khoa Toán 12 Chân trời sáng tạo.
  • Các trang web học Toán online uy tín.
  • Các video bài giảng về đạo hàm trên YouTube.

Kết luận

Bài 5 trang 97 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng để rèn luyện kỹ năng tính đạo hàm. Hy vọng với lời giải chi tiết và các mẹo giải nhanh trên đây, bạn sẽ tự tin hơn khi giải các bài tập tương tự. Chúc bạn học tốt!

Tài liệu, đề thi và đáp án Toán 12