Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 5 trang 97 sách bài tập Toán 12 Chân trời sáng tạo. Bài viết này cung cấp đáp án, phương pháp giải và giải thích rõ ràng từng bước để giúp học sinh hiểu bài và làm bài tập một cách hiệu quả.
Chúng tôi luôn cố gắng cung cấp nội dung chính xác, dễ hiểu và cập nhật mới nhất để hỗ trợ tối đa cho quá trình học tập của bạn.
Kết quả khảo sát cân nặng của 80 con tôm càng xanh 5 tháng tuổi ở một khu nuôi tôm được biểu diễn ở biểu đồ tần số dưới đây. a) Hãy lập bảng tần số ghép nhóm cho mẫu số liệu trên. b) Hãy tìm khoảng biến thiên, khoảng tứ phân vị của mẫu số liệu ghép nhóm trên.
Đề bài
Kết quả khảo sát cân nặng của 80 con tôm càng xanh 5 tháng tuổi ở một khu nuôi tôm được biểu diễn ở biểu đồ tần số dưới đây.
a) Hãy lập bảng tần số ghép nhóm cho mẫu số liệu trên.
b) Hãy tìm khoảng biến thiên, khoảng tứ phân vị của mẫu số liệu ghép nhóm trên.
Phương pháp giải - Xem chi tiết
‒ Sử dụng công thức tính khoảng biến thiên của mẫu số liệu ghép nhóm: \(R = {a_{m + 1}} - {a_1}\).
‒ Sử dụng công thức tính các tứ phân vị của mẫu số liệu ghép nhóm:
Tứ phân vị thứ \(k\) được xác định như sau: \({Q_k} = {u_m} + \frac{{\frac{{kn}}{4} - C}}{{{n_m}}}\left( {{u_{m + 1}} - {u_m}} \right)\)
trong đó:
• \(n = {n_1} + {n_2} + ... + {n_k}\) là cỡ mẫu;
• \(\left[ {{u_m};{u_{m + 1}}} \right)\) là nhóm chứa tứ phân vị thứ \(k\);
• \({n_m}\) là tần số của nhóm chứa tứ phân vị thứ \(k\);
• \(C = {n_1} + {n_2} + ... + {n_{m - 1}}\).
‒ Sử dụng công thức tính khoảng tứ phân vị của mẫu số liệu ghép nhóm: \(\Delta Q = {Q_3} - {Q_1
Lời giải chi tiết
a) Bảng tần số ghép nhóm:
b) Khoảng biến thiên của mẫu số liệu ghép nhóm đó là: \(R = 100 - 60 = 40\) (g).
Gọi \({x_1};{x_2};...;{x_{80}}\) là mẫu số liệu gốc gồm cân nặng của 80 con tôm càng xanh 5 tháng tuổi theo thứ tự không giảm.
Tứ phân vị thứ nhất của mẫu số liệu gốc là \(\frac{1}{2}\left( {{x_{20}} + {x_{21}}} \right) \in \left[ {70;80} \right)\). Do đó tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:
\({Q_1} = 70 + \frac{{\frac{{1.80}}{4} - 10}}{{20}}\left( {80 - 70} \right) = 75\)
Tứ phân vị thứ ba của mẫu số liệu gốc là \(\frac{1}{2}\left( {{x_{60}} + {x_{61}}} \right) \in \left[ {90;100} \right)\). Do đó tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:
\({Q_3} = 90 + \frac{{\frac{{3.80}}{4} - \left( {10 + 20 + 30} \right)}}{{20}}\left( {100 - 90} \right) = 90\)
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \(\Delta Q = {Q_3} - {Q_1} = 90 - 75 = 15\) (g).
Bài 5 trang 97 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của các hàm số cơ bản, hàm hợp và các hàm lượng giác. Việc nắm vững kiến thức về đạo hàm là vô cùng quan trọng, không chỉ cho kỳ thi THPT Quốc gia mà còn là nền tảng cho các môn học nâng cao ở bậc đại học.
Bài 5 thường bao gồm các dạng bài tập sau:
Để giải bài 5 trang 97 sách bài tập Toán 12 Chân trời sáng tạo, chúng ta cần thực hiện các bước sau:
Bài tập: Tính đạo hàm của hàm số f(x) = 2x3 - 5x2 + 3x - 1.
Lời giải:
f'(x) = (2x3)' - (5x2)' + (3x)' - (1)'
f'(x) = 6x2 - 10x + 3 - 0
f'(x) = 6x2 - 10x + 3
Để giải nhanh các bài tập về đạo hàm, bạn nên:
Ngoài sách bài tập, bạn có thể tham khảo thêm các tài liệu sau để học tốt môn Toán 12:
Bài 5 trang 97 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng để rèn luyện kỹ năng tính đạo hàm. Hy vọng với lời giải chi tiết và các mẹo giải nhanh trên đây, bạn sẽ tự tin hơn khi giải các bài tập tương tự. Chúc bạn học tốt!