Logo Header
  1. Môn Toán
  2. Giải bài 1 trang 61 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 1 trang 61 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 1 trang 61 Sách bài tập Toán 12 - Chân trời sáng tạo

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 1 trang 61 sách bài tập Toán 12 Chân trời sáng tạo. Bài viết này cung cấp phương pháp giải bài tập, đáp án chính xác và các kiến thức liên quan để giúp học sinh nắm vững nội dung chương trình học.

Chúng tôi luôn cố gắng trình bày lời giải một cách dễ hiểu, logic, phù hợp với trình độ của học sinh. Hy vọng bài viết này sẽ là tài liệu tham khảo hữu ích cho các bạn trong quá trình ôn tập và làm bài tập Toán 12.

Cho mặt phẳng (left( P right):2x + 2y + z + 10 = 0) và điểm (Mleft( {1;1;1} right)). Khoảng cách từ (M) đến (left( P right)) bằng A. 5. B. (frac{{15}}{9}). C. (frac{{sqrt {15} }}{3}). D. (frac{{sqrt {15} }}{9}).

Đề bài

Cho mặt phẳng \(\left( P \right):2x + 2y + z + 10 = 0\) và điểm \(M\left( {1;1;1} \right)\). Khoảng cách từ \(M\) đến \(\left( P \right)\) bằng

A. 5.

B. \(\frac{{15}}{9}\).

C. \(\frac{{\sqrt {15} }}{3}\).

D. \(\frac{{\sqrt {15} }}{9}\).

Phương pháp giải - Xem chi tiếtGiải bài 1 trang 61 sách bài tập toán 12 - Chân trời sáng tạo 1

Khoảng cách từ điểm \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\) đến mặt phẳng \(\left( P \right):Ax + By + C{\rm{z}} + D = 0\):

\(d\left( {{M_0};\left( P \right)} \right) = \frac{{\left| {A{x_0} + B{y_0} + C{{\rm{z}}_0} + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\).

Lời giải chi tiết

Khoảng cách từ điểm \(M\) đến \(\left( P \right)\) bằng:

\(d\left( {M;\left( P \right)} \right) = \frac{{\left| {2.1 + 2.1 + 1 + 10} \right|}}{{\sqrt {{2^2} + {2^2} + {1^2}} }} = 5\).

Chọn A. 

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 1 trang 61 sách bài tập toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục đề toán 12 trên nền tảng học toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 1 trang 61 Sách bài tập Toán 12 - Chân trời sáng tạo: Tổng quan

Bài 1 trang 61 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Việc nắm vững các khái niệm và công thức đạo hàm là yếu tố then chốt để hoàn thành bài tập này một cách hiệu quả.

Nội dung bài tập

Bài 1 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số tại một điểm cho trước.
  • Tìm đạo hàm của hàm số.
  • Vận dụng đạo hàm để giải các bài toán liên quan đến tốc độ thay đổi, cực trị của hàm số.

Phương pháp giải bài tập

Để giải bài 1 trang 61 sách bài tập Toán 12 Chân trời sáng tạo, học sinh cần:

  1. Xác định đúng công thức đạo hàm cần sử dụng.
  2. Thực hiện các phép tính đạo hàm một cách chính xác.
  3. Kiểm tra lại kết quả để đảm bảo tính đúng đắn.

Lời giải chi tiết bài 1 trang 61

Dưới đây là lời giải chi tiết cho từng phần của bài 1 trang 61 sách bài tập Toán 12 Chân trời sáng tạo:

Câu a)

Đề bài: Tính đạo hàm của hàm số f(x) = x2 + 3x - 2 tại x = 1.

Lời giải:

f'(x) = 2x + 3

f'(1) = 2(1) + 3 = 5

Vậy, đạo hàm của hàm số f(x) tại x = 1 là 5.

Câu b)

Đề bài: Tìm đạo hàm của hàm số g(x) = sin(x) + cos(x).

Lời giải:

g'(x) = cos(x) - sin(x)

Vậy, đạo hàm của hàm số g(x) là cos(x) - sin(x).

Câu c)

Đề bài: Cho hàm số h(x) = ex. Tính h'(x).

Lời giải:

h'(x) = ex

Vậy, đạo hàm của hàm số h(x) là ex.

Lưu ý khi giải bài tập

Trong quá trình giải bài tập, học sinh cần lưu ý:

  • Nắm vững các công thức đạo hàm cơ bản.
  • Sử dụng đúng quy tắc tính đạo hàm.
  • Kiểm tra lại kết quả để tránh sai sót.

Ứng dụng của đạo hàm

Đạo hàm có nhiều ứng dụng quan trọng trong toán học và các lĩnh vực khác, bao gồm:

  • Tìm cực trị của hàm số.
  • Tính tốc độ thay đổi của một đại lượng.
  • Giải các bài toán tối ưu hóa.

Tài liệu tham khảo

Để học tốt môn Toán 12, học sinh có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 12.
  • Sách bài tập Toán 12.
  • Các trang web học Toán online uy tín như giaitoan.edu.vn.

Kết luận

Bài 1 trang 61 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và các lưu ý trên, các bạn sẽ tự tin hơn khi giải bài tập này và đạt kết quả tốt trong môn Toán 12.

Tài liệu, đề thi và đáp án Toán 12