Logo Header
  1. Môn Toán
  2. Giải bài 4 trang 36 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 4 trang 36 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 4 trang 36 Sách bài tập Toán 12 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12 sách Chân trời sáng tạo. Bài viết này sẽ hướng dẫn bạn từng bước giải bài 4 trang 36, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.

Tìm toạ độ tâm đối xứng (I) của đồ thị hàm số sau theo tham số (m): (y = fleft( x right) = left( {2 - m} right){x^3} - 3{x^2} + 2). Chứng tỏ khi (m) thay đổi, (I) luôn thuộc một parabol xác định.

Đề bài

Tìm toạ độ tâm đối xứng \(I\) của đồ thị hàm số sau theo tham số \(m\):

\(y = f\left( x \right) = \left( {2 - m} \right){x^3} - 3{x^2} + 2\).

Chứng tỏ khi \(m\) thay đổi, \(I\) luôn thuộc một parabol xác định.

Phương pháp giải - Xem chi tiếtGiải bài 4 trang 36 sách bài tập toán 12 - Chân trời sáng tạo 1

‒ Hoành độ tâm đối xứng là nghiệm của phương trình $y''=0$.

‒ Biểu diễn \({y_I}\) theo \({x_I}\).

Lời giải chi tiết

Để hàm số đã cho là hàm số bậc ba, ta cần có điều kiện: \(2 - m \ne 0\) hay \(m \ne 2\). (*)

\(y'=3\left( 2-m \right){{x}^{2}}-6x;y''=6\left( 2-m \right)x-6;y''=0\Leftrightarrow x=\frac{1}{2-m}\).

Vậy \({x_I} = \frac{1}{{2 - m}}\).

Tâm đối xứng \(I\) của đồ thị hàm số có tung độ:

\({y_I} = \left( {2 - m} \right).{\left( {\frac{1}{{2 - m}}} \right)^3} - 3.{\left( {\frac{1}{{2 - m}}} \right)^2} + 2 = 2 - \frac{2}{{{{\left( {2 - m} \right)}^2}}} = 2 - 2.{\left( {\frac{1}{{2 - m}}} \right)^2} = - 2x_I^2 + 2\).

Vậy \({y_I}\) là một hàm số bậc hai theo \({x_I}\).

Suy ra tâm đối xứng \(I\) của đồ thị hàm số đã cho luôn thuộc một parabol, đó là đồ thị hàm số bậc hai \(y = - 2{x^2} + 2\).

Mặt khác \({x_I} = \frac{1}{{2 - m}}\) nên \(m = 2 - \frac{1}{{{x_I}}}\).

Do \(m \ne 2\) nên \(2 - \frac{1}{{{x_I}}} \ne 2 \Leftrightarrow \frac{1}{{{x_I}}} \ne 0\) (luôn đúng với mọi \({x_I} \in \mathbb{R}\)).

Vậy khi \(m\) thay đổi, \(I\) luôn thuộc parabol \(y = - 2{x^2} + 2\).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 4 trang 36 sách bài tập toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục toán lớp 12 trên nền tảng môn toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 4 trang 36 Sách bài tập Toán 12 - Chân trời sáng tạo: Tổng quan

Bài 4 trang 36 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, quy tắc tính đạo hàm, và các ứng dụng của đạo hàm để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và luyện tập thường xuyên là chìa khóa để thành công trong việc giải bài tập này.

Nội dung bài 4 trang 36 Sách bài tập Toán 12 - Chân trời sáng tạo

Bài 4 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của các hàm số đơn thức, đa thức, và các hàm số phức tạp hơn.
  • Áp dụng quy tắc tính đạo hàm: Vận dụng các quy tắc như quy tắc cộng, trừ, nhân, chia, quy tắc hàm hợp để tính đạo hàm.
  • Giải phương trình đạo hàm: Tìm nghiệm của phương trình đạo hàm để xác định các điểm cực trị, điểm uốn của hàm số.
  • Ứng dụng đạo hàm để giải quyết các bài toán thực tế: Sử dụng đạo hàm để tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số, hoặc để giải quyết các bài toán liên quan đến tốc độ thay đổi.

Hướng dẫn giải chi tiết bài 4 trang 36

Để giải bài 4 trang 36 một cách hiệu quả, bạn cần thực hiện theo các bước sau:

  1. Đọc kỹ đề bài: Xác định rõ yêu cầu của bài toán, các dữ kiện đã cho, và các điều kiện ràng buộc.
  2. Xác định kiến thức cần sử dụng: Xác định các công thức, định lý, và quy tắc đạo hàm cần thiết để giải bài toán.
  3. Thực hiện các phép tính đạo hàm: Sử dụng các quy tắc đạo hàm để tính đạo hàm của hàm số.
  4. Giải phương trình đạo hàm: Tìm nghiệm của phương trình đạo hàm để xác định các điểm cực trị, điểm uốn của hàm số.
  5. Kiểm tra lại kết quả: Đảm bảo rằng kết quả của bạn là chính xác và phù hợp với yêu cầu của bài toán.

Ví dụ minh họa

Ví dụ: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.

Giải:

f'(x) = 3x2 + 4x - 5

Mẹo giải bài tập đạo hàm hiệu quả

  • Nắm vững các công thức đạo hàm cơ bản: Việc thuộc lòng các công thức đạo hàm cơ bản sẽ giúp bạn tiết kiệm thời gian và tránh sai sót.
  • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau sẽ giúp bạn làm quen với các dạng bài tập và rèn luyện kỹ năng giải toán.
  • Sử dụng các công cụ hỗ trợ: Bạn có thể sử dụng các công cụ tính đạo hàm online để kiểm tra kết quả của mình.
  • Tìm kiếm sự giúp đỡ khi cần thiết: Nếu bạn gặp khó khăn trong quá trình giải bài tập, đừng ngần ngại hỏi giáo viên hoặc bạn bè.

Tài liệu tham khảo hữu ích

Để học tập và ôn luyện kiến thức về đạo hàm, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 12 Chân trời sáng tạo
  • Sách bài tập Toán 12 Chân trời sáng tạo
  • Các trang web học toán online uy tín
  • Các video bài giảng về đạo hàm trên YouTube

Kết luận

Bài 4 trang 36 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm. Hy vọng rằng với hướng dẫn chi tiết và các mẹo giải bài tập hiệu quả mà giaitoan.edu.vn cung cấp, bạn sẽ tự tin hơn trong quá trình học tập và đạt được kết quả tốt nhất.

Tài liệu, đề thi và đáp án Toán 12