Logo Header
  1. Môn Toán
  2. Giải bài 14 trang 12 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 14 trang 12 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 14 trang 12 Sách bài tập Toán 12 - Chân trời sáng tạo

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 14 trang 12 sách bài tập Toán 12 Chân trời sáng tạo. Bài viết này cung cấp đáp án đầy đủ, phương pháp giải rõ ràng, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Chúng tôi luôn cố gắng cung cấp nội dung chính xác, dễ hiểu và cập nhật mới nhất để hỗ trợ tối đa cho quá trình học tập của bạn.

Một cửa hàng ước tính số lượng sản phẩm \(q\left( {0 \le q \le 100} \right)\) bán được phụ thuộc vào giá bán \(p\) (tính bằng nghìn đồng) theo công thức \(p + 2q = 300\). Chi phí cửa hàng cần chi để nhập về \(q\) sản phẩm là \(C\left( q \right) = 0,05{q^3} - 5,7{q^2} + 295q + 300\) (nghìn đồng). a) Viết công thức tính lợi nhuận \(I\) của cửa hàng khi nhập về và bán được \(q\) sản phẩm. b) Trong khoảng nào của \(q\) thì lợi nhuận sẽ tăng khi \(q\) tăng, trong khoảng nào thì lợi nhuận giảm kh

Đề bài

Một cửa hàng ước tính số lượng sản phẩm \(q\left( {0 \le q \le 100} \right)\) bán được phụ thuộc vào giá bán \(p\) (tính bằng nghìn đồng) theo công thức \(p + 2q = 300\). Chi phí cửa hàng cần chi để nhập về \(q\) sản phẩm là

\(C\left( q \right) = 0,05{q^3} - 5,7{q^2} + 295q + 300\) (nghìn đồng).

a) Viết công thức tính lợi nhuận \(I\) của cửa hàng khi nhập về và bán được \(q\) sản phẩm.

b) Trong khoảng nào của \(q\) thì lợi nhuận sẽ tăng khi \(q\) tăng, trong khoảng nào thì lợi nhuận giảm khi \(q\) tăng?

Phương pháp giải - Xem chi tiếtGiải bài 14 trang 12 sách bài tập toán 12 - Chân trời sáng tạo 1

• \(I = pq - C\).

• Xét hàm số \(I\left( q \right)\) trên đoạn $\left[ 0;100 \right]$, lập bảng biến thiên và tìm khoảng đồng biến, nghịch biến của hàm số.

Lời giải chi tiết

a) \(p + 2q = 300 \Leftrightarrow p = 300 - 2q\)

\(I = pq - C = \left( {300 - 2q} \right).q - \left( {0,05{q^3} - 5,7{q^2} + 295q + 300} \right) = - 0,05{q^3} + 3,7{q^2} + 5q - 300\).

b) Xét hàm số \(I\left( q \right) = - 0,05{q^3} + 3,7{q^2} + 5q - 300\) trên đoạn \(\left[ {0;100} \right]\).

Ta có:

\(I'\left( q \right) = - 0,15{q^2} + 7,4q + 5;I'\left( q \right) = 0 \Leftrightarrow q = 50\) hoặc \(q = - \frac{2}{3}\) (loại).

Bảng biến thiên:

Giải bài 14 trang 12 sách bài tập toán 12 - Chân trời sáng tạo 2

Vậy hàm số đồng biến trên khoảng \(\left( {0;50} \right)\), hàm số nghịch biến trên khoảng \(\left( {50;100} \right)\).

Vậy trong khoảng \(\left( {0;50} \right)\) lợi nhuận sẽ tăng khi \(q\) tăng, trong khoảng \(\left( {50;100} \right)\) lợi nhuận sẽ giảm khi \(q\) tăng.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 14 trang 12 sách bài tập toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục đề toán 12 trên nền tảng tài liệu toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 14 trang 12 Sách bài tập Toán 12 - Chân trời sáng tạo: Tổng quan

Bài 14 trang 12 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học Toán 12 tập 1, tập trung vào các kiến thức về giới hạn của hàm số. Việc nắm vững kiến thức này là nền tảng quan trọng để học tốt các chương trình Toán học nâng cao hơn.

Nội dung bài 14 trang 12 Sách bài tập Toán 12 - Chân trời sáng tạo

Bài 14 bao gồm các dạng bài tập khác nhau, yêu cầu học sinh:

  • Tính giới hạn của hàm số tại một điểm.
  • Chứng minh sự tồn tại giới hạn của hàm số.
  • Sử dụng định nghĩa giới hạn để giải quyết các bài toán cụ thể.

Phương pháp giải bài tập giới hạn hàm số

Để giải quyết các bài tập về giới hạn hàm số, học sinh cần nắm vững các phương pháp sau:

  1. Phương pháp trực tiếp: Thay trực tiếp giá trị của x vào hàm số để tính giới hạn. Phương pháp này chỉ áp dụng được khi hàm số liên tục tại điểm đó.
  2. Phương pháp phân tích thành nhân tử: Phân tích tử số và mẫu số thành nhân tử để rút gọn biểu thức, sau đó thay giá trị của x vào để tính giới hạn.
  3. Phương pháp nhân liên hợp: Nhân cả tử số và mẫu số với biểu thức liên hợp để khử dạng vô định.
  4. Sử dụng các định lý về giới hạn: Áp dụng các định lý về giới hạn của tổng, hiệu, tích, thương và lũy thừa của các hàm số.

Giải chi tiết bài 14 trang 12 Sách bài tập Toán 12 - Chân trời sáng tạo

Câu 1: (Đề bài cụ thể của câu 1)

Lời giải: (Giải chi tiết câu 1, bao gồm các bước giải, lý thuyết áp dụng và kết luận)

Câu 2: (Đề bài cụ thể của câu 2)

Lời giải: (Giải chi tiết câu 2, bao gồm các bước giải, lý thuyết áp dụng và kết luận)

Câu 3: (Đề bài cụ thể của câu 3)

Lời giải: (Giải chi tiết câu 3, bao gồm các bước giải, lý thuyết áp dụng và kết luận)

Lưu ý khi giải bài tập giới hạn hàm số

  • Luôn kiểm tra xem hàm số có liên tục tại điểm cần tính giới hạn hay không.
  • Sử dụng các phương pháp giải phù hợp với từng dạng bài tập cụ thể.
  • Kiểm tra lại kết quả sau khi giải để đảm bảo tính chính xác.

Bài tập luyện tập

Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập về giới hạn hàm số, bạn có thể tham khảo các bài tập sau:

  • Bài tập 1: (Đề bài)
  • Bài tập 2: (Đề bài)
  • Bài tập 3: (Đề bài)

Kết luận

Bài 14 trang 12 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh hiểu sâu hơn về giới hạn hàm số. Hy vọng với lời giải chi tiết và phương pháp giải rõ ràng mà Giaitoan.edu.vn cung cấp, bạn sẽ học tốt môn Toán 12 và đạt kết quả cao trong các kỳ thi.

Tài liệu, đề thi và đáp án Toán 12