Logo Header
  1. Môn Toán
  2. Giải bài 6 trang 62 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 6 trang 62 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 6 trang 62 Sách bài tập Toán 12 - Chân trời sáng tạo

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 6 trang 62 sách bài tập Toán 12 Chân trời sáng tạo. Bài viết này cung cấp đáp án, phương pháp giải và giải thích rõ ràng, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Chúng tôi luôn cố gắng cung cấp nội dung chính xác, dễ hiểu và cập nhật mới nhất để hỗ trợ tối đa cho quá trình học tập của bạn.

Cho đường thẳng (d:frac{{x - 1}}{2} = frac{{3 - y}}{{ - 1}} = z + 1). Trong các phương trình sau, phương trình nào là phương trình tham số của (d)? A. (left{ begin{array}{l}x = 1 + 2t\y = 3 - t\z = - 1end{array} right.). B. (left{ begin{array}{l}x = 1 + 2t\y = - 3 + t\z = - 1 + tend{array} right.). C. (left{ begin{array}{l}x = 1 + 2t\y = 3 + t\z = - 1 + tend{array} right.). D. (left{ begin{array}{l}x = - 1 + 2t\y = 2 + t\z = - 2 + tend{array} ri

Đề bài

Cho đường thẳng \(d:\frac{{x - 1}}{2} = \frac{{3 - y}}{{ - 1}} = z + 1\). Trong các phương trình sau, phương trình nào là phương trình tham số của \(d\)?

A. \(\left\{ \begin{array}{l}x = 1 + 2t\\y = 3 - t\\z = - 1\end{array} \right.\).

B. \(\left\{ \begin{array}{l}x = 1 + 2t\\y = - 3 + t\\z = - 1 + t\end{array} \right.\).

C. \(\left\{ \begin{array}{l}x = 1 + 2t\\y = 3 + t\\z = - 1 + t\end{array} \right.\).

D. \(\left\{ \begin{array}{l}x = - 1 + 2t\\y = 2 + t\\z = - 2 + t\end{array} \right.\).

Phương pháp giải - Xem chi tiếtGiải bài 6 trang 62 sách bài tập toán 12 - Chân trời sáng tạo 1

Phương trình tham số của đường thẳng \(\Delta \) đi qua \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( {a;b;c} \right)\) là: \(\left\{ \begin{array}{l}x = {x_0} + at\\y = {y_0} + bt\\z = {z_0} + ct\end{array} \right.\).

Lời giải chi tiết

\(d:\frac{{x - 1}}{2} = \frac{{3 - y}}{{ - 1}} = z + 1 \Leftrightarrow d:\frac{{x - 1}}{2} = \frac{{y - 3}}{1} = \frac{{z + 1}}{1}\)

Đường thẳng \(d\) có phương trình chính tắc là \(\frac{{x - 1}}{2} = \frac{{y - 3}}{1} = \frac{{z + 1}}{1}\) đi qua điểm \(M\left( {1;3; - 1} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( {2;1;1} \right)\).

Phương trình tham số của \(d\) là: \(\left\{ \begin{array}{l}x = 1 + 2t\\y = 3 + t\\z = - 1 + t\end{array} \right.\).

Chọn C.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 6 trang 62 sách bài tập toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục bài toán lớp 12 trên nền tảng toán math. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 6 trang 62 Sách bài tập Toán 12 - Chân trời sáng tạo: Tổng quan

Bài 6 trang 62 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của hàm số, đặc biệt là đạo hàm của tổng, hiệu, tích, thương và đạo hàm hàm hợp. Việc nắm vững các quy tắc này là nền tảng để giải quyết các bài toán phức tạp hơn trong chương trình học.

Nội dung bài tập

Bài 6 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số cho trước.
  • Tìm đạo hàm cấp hai của hàm số.
  • Xác định hệ số góc của tiếp tuyến tại một điểm.
  • Ứng dụng đạo hàm để giải các bài toán liên quan đến tốc độ thay đổi.

Phương pháp giải

Để giải bài 6 trang 62 sách bài tập Toán 12 Chân trời sáng tạo hiệu quả, bạn cần:

  1. Nắm vững các quy tắc tính đạo hàm cơ bản.
  2. Phân tích cấu trúc của hàm số để lựa chọn phương pháp tính đạo hàm phù hợp.
  3. Thực hiện các phép biến đổi đại số một cách cẩn thận để tránh sai sót.
  4. Kiểm tra lại kết quả bằng cách thay các giá trị cụ thể vào hàm số và đạo hàm.

Ví dụ minh họa

Ví dụ 1: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.

Giải:

f'(x) = 3x2 + 4x - 5

Ví dụ 2: Tìm đạo hàm cấp hai của hàm số g(x) = sin(x).

Giải:

g'(x) = cos(x)

g''(x) = -sin(x)

Lưu ý quan trọng

Khi tính đạo hàm, cần chú ý đến các quy tắc sau:

  • Đạo hàm của một hằng số bằng 0.
  • Đạo hàm của xn bằng nxn-1.
  • Đạo hàm của sin(x) bằng cos(x).
  • Đạo hàm của cos(x) bằng -sin(x).

Bài tập luyện tập

Để củng cố kiến thức và kỹ năng giải bài tập, bạn có thể tự giải các bài tập sau:

  • Tính đạo hàm của hàm số h(x) = ex + ln(x).
  • Tìm đạo hàm cấp hai của hàm số k(x) = tan(x).
  • Xác định hệ số góc của tiếp tuyến của hàm số y = x2 tại điểm x = 1.

Tài liệu tham khảo

Để học tập và ôn luyện hiệu quả, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 12 Chân trời sáng tạo.
  • Sách bài tập Toán 12 Chân trời sáng tạo.
  • Các trang web học toán online uy tín.

Kết luận

Bài 6 trang 62 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng tính đạo hàm và ứng dụng đạo hàm vào giải quyết các bài toán thực tế. Hy vọng với lời giải chi tiết và phương pháp giải hiệu quả mà Giaitoan.edu.vn cung cấp, bạn sẽ tự tin hơn trong quá trình học tập và đạt kết quả tốt nhất.

Tài liệu, đề thi và đáp án Toán 12