Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 6 trang 62 sách bài tập Toán 12 Chân trời sáng tạo. Bài viết này cung cấp đáp án, phương pháp giải và giải thích rõ ràng, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cố gắng cung cấp nội dung chính xác, dễ hiểu và cập nhật mới nhất để hỗ trợ tối đa cho quá trình học tập của bạn.
Cho đường thẳng (d:frac{{x - 1}}{2} = frac{{3 - y}}{{ - 1}} = z + 1). Trong các phương trình sau, phương trình nào là phương trình tham số của (d)? A. (left{ begin{array}{l}x = 1 + 2t\y = 3 - t\z = - 1end{array} right.). B. (left{ begin{array}{l}x = 1 + 2t\y = - 3 + t\z = - 1 + tend{array} right.). C. (left{ begin{array}{l}x = 1 + 2t\y = 3 + t\z = - 1 + tend{array} right.). D. (left{ begin{array}{l}x = - 1 + 2t\y = 2 + t\z = - 2 + tend{array} ri
Đề bài
Cho đường thẳng \(d:\frac{{x - 1}}{2} = \frac{{3 - y}}{{ - 1}} = z + 1\). Trong các phương trình sau, phương trình nào là phương trình tham số của \(d\)?
A. \(\left\{ \begin{array}{l}x = 1 + 2t\\y = 3 - t\\z = - 1\end{array} \right.\).
B. \(\left\{ \begin{array}{l}x = 1 + 2t\\y = - 3 + t\\z = - 1 + t\end{array} \right.\).
C. \(\left\{ \begin{array}{l}x = 1 + 2t\\y = 3 + t\\z = - 1 + t\end{array} \right.\).
D. \(\left\{ \begin{array}{l}x = - 1 + 2t\\y = 2 + t\\z = - 2 + t\end{array} \right.\).
Phương pháp giải - Xem chi tiết
Phương trình tham số của đường thẳng \(\Delta \) đi qua \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( {a;b;c} \right)\) là: \(\left\{ \begin{array}{l}x = {x_0} + at\\y = {y_0} + bt\\z = {z_0} + ct\end{array} \right.\).
Lời giải chi tiết
\(d:\frac{{x - 1}}{2} = \frac{{3 - y}}{{ - 1}} = z + 1 \Leftrightarrow d:\frac{{x - 1}}{2} = \frac{{y - 3}}{1} = \frac{{z + 1}}{1}\)
Đường thẳng \(d\) có phương trình chính tắc là \(\frac{{x - 1}}{2} = \frac{{y - 3}}{1} = \frac{{z + 1}}{1}\) đi qua điểm \(M\left( {1;3; - 1} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( {2;1;1} \right)\).
Phương trình tham số của \(d\) là: \(\left\{ \begin{array}{l}x = 1 + 2t\\y = 3 + t\\z = - 1 + t\end{array} \right.\).
Chọn C.
Bài 6 trang 62 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của hàm số, đặc biệt là đạo hàm của tổng, hiệu, tích, thương và đạo hàm hàm hợp. Việc nắm vững các quy tắc này là nền tảng để giải quyết các bài toán phức tạp hơn trong chương trình học.
Bài 6 thường bao gồm các dạng bài tập sau:
Để giải bài 6 trang 62 sách bài tập Toán 12 Chân trời sáng tạo hiệu quả, bạn cần:
Ví dụ 1: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.
Giải:
f'(x) = 3x2 + 4x - 5
Ví dụ 2: Tìm đạo hàm cấp hai của hàm số g(x) = sin(x).
Giải:
g'(x) = cos(x)
g''(x) = -sin(x)
Khi tính đạo hàm, cần chú ý đến các quy tắc sau:
Để củng cố kiến thức và kỹ năng giải bài tập, bạn có thể tự giải các bài tập sau:
Để học tập và ôn luyện hiệu quả, bạn có thể tham khảo các tài liệu sau:
Bài 6 trang 62 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng tính đạo hàm và ứng dụng đạo hàm vào giải quyết các bài toán thực tế. Hy vọng với lời giải chi tiết và phương pháp giải hiệu quả mà Giaitoan.edu.vn cung cấp, bạn sẽ tự tin hơn trong quá trình học tập và đạt kết quả tốt nhất.