Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 2 trang 59 sách bài tập Toán 12 Chân trời sáng tạo. Bài viết này cung cấp phương pháp giải bài tập một cách rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin làm bài tập.
Chúng tôi luôn cập nhật nhanh chóng và chính xác các lời giải bài tập Toán 12 Chân trời sáng tạo, đáp ứng nhu cầu học tập của học sinh trên toàn quốc.
Viết phương trình mặt cầu \(\left( S \right)\) trong mỗi trường hợp sau: a) \(\left( S \right)\) có tâm \(I\left( {--5;7;6} \right)\) và bán kính \(R = 9\). b) \(\left( S \right)\) có tâm \(I\left( {0; - 3;0} \right)\) và đi qua điểm \(M\left( {4;0; - 2} \right)\). c) \(\left( S \right)\) có đường kính \(EF\) với \(E\left( {1;5;9} \right),F\left( {11;3;1} \right)\).
Đề bài
Viết phương trình mặt cầu \(\left( S \right)\) trong mỗi trường hợp sau:
a) \(\left( S \right)\) có tâm \(I\left( {--5;7;6} \right)\) và bán kính \(R = 9\).
b) \(\left( S \right)\) có tâm \(I\left( {0; - 3;0} \right)\) và đi qua điểm \(M\left( {4;0; - 2} \right)\).
c) \(\left( S \right)\) có đường kính \(EF\) với \(E\left( {1;5;9} \right),F\left( {11;3;1} \right)\).
Phương pháp giải - Xem chi tiết
‒ Để viết phương trình mặt cầu, ta tìm tâm và bán kính mặt cầu.
‒ Phương trình của mặt cầu tâm \(I\left( {a;b;c} \right)\) bán kính \(R\) là: \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\).
Lời giải chi tiết
a) Phương trình của mặt cầu tâm \(I\left( {--5;7;6} \right)\) và bán kính \(R = 9\) là:
\({\left( {x + 5} \right)^2} + {\left( {y - 7} \right)^2} + {\left( {z - 6} \right)^2} = {9^2}\) hay \({\left( {x + 5} \right)^2} + {\left( {y - 7} \right)^2} + {\left( {z - 6} \right)^2} = 81\).
b) Bán kính của mặt cầu đó bằng:
\(R = IM = \sqrt {{{\left( {4 - 0} \right)}^2} + {{\left( {0 - \left( { - 3} \right)} \right)}^2} + {{\left( { - 2 - 0} \right)}^2}} = \sqrt {29} \).
Vậy phương trình mặt cầu đó là:
\({\left( {x - 0} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z - 0} \right)^2} = {\left( {\sqrt {29} } \right)^2}\) hay \({x^2} + {\left( {y + 3} \right)^2} + {z^2} = 29\).
c) Mặt cầu đường kính \(EF\) có tâm \(I\left( {6;4;5} \right)\) là trung điểm của \(EF\).
Bán kính của mặt cầu đó bằng:
\(R = IE = \sqrt {{{\left( {6 - 1} \right)}^2} + {{\left( {4 - 5} \right)}^2} + {{\left( {5 - 9} \right)}^2}} = \sqrt {42} \).
Vậy phương trình mặt cầu đó là:
\({\left( {x - 6} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z - 5} \right)^2} = {\left( {\sqrt {42} } \right)^2}\) hay \({\left( {x - 6} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z - 5} \right)^2} = 42\).
Bài 2 trang 59 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Việc nắm vững các công thức đạo hàm cơ bản và kỹ năng tính đạo hàm là yếu tố then chốt để hoàn thành bài tập này một cách hiệu quả.
Bài 2 trang 59 sách bài tập Toán 12 Chân trời sáng tạo thường bao gồm các dạng bài tập sau:
Để giải bài 2 trang 59 sách bài tập Toán 12 Chân trời sáng tạo, học sinh cần thực hiện theo các bước sau:
Dưới đây là lời giải chi tiết bài 2 trang 59 sách bài tập Toán 12 Chân trời sáng tạo:
(Nội dung lời giải chi tiết sẽ được trình bày tại đây, bao gồm các bước giải, công thức sử dụng và kết quả cuối cùng. Ví dụ:)
Bài 2: Tính đạo hàm của hàm số f(x) = x2 + 2x - 1 tại x = 1.
Giải:
f'(x) = 2x + 2
f'(1) = 2(1) + 2 = 4
Vậy, đạo hàm của hàm số f(x) tại x = 1 là 4.
Ngoài bài 2 trang 59, sách bài tập Toán 12 Chân trời sáng tạo còn có nhiều bài tập tương tự. Để giải các bài tập này, học sinh có thể áp dụng các phương pháp đã học trong bài 2, đồng thời chú ý đến các điểm khác biệt trong đề bài.
Ví dụ, nếu bài tập yêu cầu tìm đạo hàm của một hàm số phức tạp hơn, học sinh cần sử dụng các quy tắc đạo hàm của tổng, hiệu, tích, thương của các hàm số.
Bài 2 trang 59 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Bằng cách nắm vững các công thức đạo hàm, phương pháp giải bài tập và luyện tập thường xuyên, học sinh có thể tự tin giải quyết các bài toán liên quan đến đạo hàm một cách hiệu quả.
Hàm số | Đạo hàm |
---|---|
f(x) = c (hằng số) | f'(x) = 0 |
f(x) = xn | f'(x) = nxn-1 |
f(x) = sin x | f'(x) = cos x |
f(x) = cos x | f'(x) = -sin x |