Logo Header
  1. Môn Toán
  2. Giải bài 7 trang 60 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 7 trang 60 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 7 trang 60 Sách bài tập Toán 12 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 7 trang 60 sách bài tập Toán 12 chương trình Chân trời sáng tạo. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các kỳ thi.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 7 trang 60 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.

Một khu vực đã được thiết lập một hệ toạ độ \(Oxyz\) (đơn vị trên các trục là mét). Một flycam đang phát sóng wifi bao phủ một vùng không gian bên trong mặt cầu \(\left( S \right):{\left( {x - 20} \right)^2} + {\left( {y - 30} \right)^2} + {\left( {z - 10} \right)^2} = 400\). Một người đang sử dụng máy tính tại điểm \(M\) nằm trên điểm giao của mặt cầu \(\left( S \right)\) và mặt đất \(\left( P \right):z = 0\). a) Xác định toạ độ tâm \(I\) và bán kính của mặt cầu \(\left( S \right)\). Tính kho

Đề bài

Một khu vực đã được thiết lập một hệ toạ độ \(Oxyz\) (đơn vị trên các trục là mét). Một flycam đang phát sóng wifi bao phủ một vùng không gian bên trong mặt cầu \(\left( S \right):{\left( {x - 20} \right)^2} + {\left( {y - 30} \right)^2} + {\left( {z - 10} \right)^2} = 400\). Một người đang sử dụng máy tính tại điểm \(M\) nằm trên điểm giao của mặt cầu \(\left( S \right)\) và mặt đất \(\left( P \right):z = 0\).

a) Xác định toạ độ tâm \(I\) và bán kính của mặt cầu \(\left( S \right)\). Tính khoảng cách \(IJ\) của đoạn vuông góc từ \(I\) đến \(\left( P \right)\).

b) Tính độ dài đoạn thẳng \(JM\). Làm tròn kết quả đến hàng phần trăm của mét.

Phương pháp giải - Xem chi tiếtGiải bài 7 trang 60 sách bài tập toán 12 - Chân trời sáng tạo 1

‒ Mặt cầu \(\left( S \right):{\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\) có tâm \(I\left( {a;b;c} \right)\) bán kính \(R\).

‒ Khoảng cách \(IJ\) của đoạn vuông góc từ \(I\) đến \(\left( P \right)\) chính là khoảng cách từ \(I\) đến \(\left( P \right)\).

‒ Khoảng cách từ điểm \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\) đến mặt phẳng \(\left( P \right):Ax + By + C{\rm{z}} + D = 0\):

\(d\left( {{M_0};\left( P \right)} \right) = \frac{{\left| {A{x_0} + B{y_0} + C{{\rm{z}}_0} + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\).

Lời giải chi tiết

Giải bài 7 trang 60 sách bài tập toán 12 - Chân trời sáng tạo 2

a) Mặt cầu \(\left( S \right):{\left( {x - 20} \right)^2} + {\left( {y - 30} \right)^2} + {\left( {z - 10} \right)^2} = 400\) có tâm \(I\left( {20;30;10} \right)\) bán kính \(R = \sqrt {400} = 20\).

\(IJ = d\left( {I;\left( P \right)} \right) = \frac{{\left| {10} \right|}}{{\sqrt {{0^2} + {0^2} + {1^2}} }} = 10\left( m \right)\).

b) Ta có \(M \in \left( S \right)\) nên \(IM = R = 20\).

Tam giác \(IJM\) vuông tại \(J\) nên ta có:

\(JM = \sqrt {I{M^2} - I{J^2}} = \sqrt {{{20}^2} - {{10}^2}} = 10\sqrt 3 \approx 17,32\left( m \right)\).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 7 trang 60 sách bài tập toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục giải sgk toán 12 trên nền tảng toán học. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 7 trang 60 Sách bài tập Toán 12 - Chân trời sáng tạo: Tổng quan

Bài 7 trang 60 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của các hàm số cơ bản như hàm đa thức, hàm lượng giác, hàm mũ, hàm logarit và các phép toán trên hàm số. Mục tiêu chính là giúp học sinh rèn luyện kỹ năng tính đạo hàm và ứng dụng đạo hàm để giải quyết các bài toán thực tế.

Nội dung chi tiết bài 7 trang 60

Bài 7 thường bao gồm các dạng bài tập sau:

  1. Tính đạo hàm của hàm số: Yêu cầu học sinh tính đạo hàm của một hàm số cho trước. Đây là dạng bài tập cơ bản nhất, đòi hỏi học sinh nắm vững các quy tắc tính đạo hàm.
  2. Tìm đạo hàm cấp hai: Yêu cầu học sinh tính đạo hàm cấp hai của một hàm số. Dạng bài tập này đòi hỏi học sinh phải tính đạo hàm cấp một trước, sau đó tính đạo hàm của đạo hàm cấp một.
  3. Ứng dụng đạo hàm để giải phương trình: Yêu cầu học sinh sử dụng đạo hàm để giải phương trình. Dạng bài tập này đòi hỏi học sinh phải hiểu rõ mối liên hệ giữa đạo hàm và tính đơn điệu của hàm số.
  4. Bài toán thực tế: Các bài toán liên quan đến vận tốc, gia tốc, hoặc các ứng dụng khác của đạo hàm trong thực tế.

Hướng dẫn giải chi tiết

Để giải bài 7 trang 60 sách bài tập Toán 12 Chân trời sáng tạo một cách hiệu quả, bạn cần:

  • Nắm vững các quy tắc tính đạo hàm: Đạo hàm của hàm số lũy thừa, hàm lượng giác, hàm mũ, hàm logarit, và các phép toán cộng, trừ, nhân, chia, hợp hàm.
  • Hiểu rõ các khái niệm liên quan: Đạo hàm, đạo hàm cấp hai, tính đơn điệu của hàm số, cực trị của hàm số.
  • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để rèn luyện kỹ năng và làm quen với các dạng bài tập.

Ví dụ minh họa

Ví dụ 1: Tính đạo hàm của hàm số f(x) = 3x2 + 2x - 1.

Giải:

f'(x) = 6x + 2

Ví dụ 2: Tìm đạo hàm cấp hai của hàm số g(x) = sin(x).

Giải:

g'(x) = cos(x)

g''(x) = -sin(x)

Mẹo giải nhanh

Để giải nhanh các bài tập về đạo hàm, bạn có thể sử dụng các mẹo sau:

  • Sử dụng bảng đạo hàm: Bảng đạo hàm chứa các công thức đạo hàm của các hàm số cơ bản, giúp bạn tiết kiệm thời gian và tránh sai sót.
  • Phân tích cấu trúc hàm số: Xác định hàm số thuộc dạng nào (đa thức, lượng giác, mũ, logarit) để áp dụng quy tắc tính đạo hàm phù hợp.
  • Kiểm tra lại kết quả: Sau khi tính đạo hàm, hãy kiểm tra lại kết quả bằng cách thay các giá trị cụ thể của x vào hàm số và đạo hàm để đảm bảo tính chính xác.

Tài liệu tham khảo

Để học tập và ôn luyện kiến thức về đạo hàm, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 12 Chân trời sáng tạo
  • Sách bài tập Toán 12 Chân trời sáng tạo
  • Các trang web học toán online uy tín như giaitoan.edu.vn
  • Các video bài giảng về đạo hàm trên YouTube

Kết luận

Bài 7 trang 60 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Bằng cách nắm vững các quy tắc tính đạo hàm, hiểu rõ các khái niệm liên quan và luyện tập thường xuyên, bạn có thể tự tin giải quyết các bài tập về đạo hàm một cách hiệu quả. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 12