Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 6 trang 55 sách bài tập Toán 12 Chân trời sáng tạo. Bài viết này cung cấp phương pháp giải bài tập một cách rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cố gắng cung cấp nội dung chính xác và cập nhật nhất để hỗ trợ tối đa cho quá trình học tập của bạn. Hãy cùng theo dõi và tham khảo!
Cho hình chóp (S.ABCD) có đáy (ABCD) là hình vuông cạnh bằng 4. Mặt bên (SAB) là tam giác cân tại (S) có chiều cao bằng 6 và nằm trong mặt phẳng vuông góc với đáy. a) Tính góc (alpha ) giữa hai đường thẳng (SD) và (BC); b) Tính góc (beta ) giữa hai mặt phẳng (left( {SAD} right)) và (left( {SCD} right)).
Đề bài
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh bằng 4. Mặt bên \(SAB\) là tam giác cân tại \(S\) có chiều cao bằng 6 và nằm trong mặt phẳng vuông góc với đáy.
a) Tính góc \(\alpha \) giữa hai đường thẳng \(SD\) và \(BC\);
b) Tính góc \(\beta \) giữa hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {SCD} \right)\).
Phương pháp giải - Xem chi tiết
Gắn vào hệ trục toạ độ và sử dụng công thức góc giữa hai đường thẳng và góc giữa hai mặt phẳng.
Lời giải chi tiết
Gọi \(O\) là trung điểm của \(AB\), \(I\) là trung điểm của \(C{\rm{D}}\).
\(SAB\) là tam giác cân tại \(S\) nên \(SO \bot AB\), suy ra \(SO \bot \left( {ABCD} \right)\).
Chọn hệ trục \(Oxyz\) như hình vẽ. Ta có:
\(S\left( {0;0;6} \right),A\left( {2;0;0} \right),B\left( { - 2;0;0} \right),C\left( { - 2;4;0} \right),D\left( {2;4;0} \right)\).
a) Ta có \(\overrightarrow {SD} = \left( {2;4; - 6} \right),\overrightarrow {BC} = \left( {0;4;0} \right)\), suy ra
\(\cos \left( {S{\rm{D}},BC} \right) = \left| {\cos \left( {\overrightarrow {S{\rm{D}}} ,\overrightarrow {BC} } \right)} \right| = \frac{{\left| {2.0 + 4.4 + \left( { - 6} \right).0} \right|}}{{\sqrt {{2^2} + {4^2} + {{\left( { - 6} \right)}^2}} .\sqrt {{0^2} + {4^2} + {0^2}} }} = \frac{{\sqrt {14} }}{7}\)
Vậy \(\left( {S{\rm{D}},BC} \right) \approx {57,7^ \circ }\).
b) Ta có: \(\overrightarrow {SD} = \left( {2;4; - 6} \right),\overrightarrow {SA} = \left( {2;0; - 6} \right) \Rightarrow \left[ {\overrightarrow {SD} ,\overrightarrow {SA} } \right] = \left( { - 24;0; - 8} \right) = - 8\left( {3;0;1} \right)\).
Do đó \(\left( {SAD} \right)\) có vectơ pháp tuyến \(\overrightarrow n = \left( {3;0;1} \right)\).
\(\overrightarrow {SD} = \left( {2;4; - 6} \right),\overrightarrow {CD} = \left( {4;0;0} \right) \Rightarrow \left[ {\overrightarrow {SD} ,\overrightarrow {CD} } \right] = \left( {0; - 24; - 16} \right) = - 8\left( {0;3;2} \right)\).
Do đó \(\left( {SCD} \right)\) có vectơ pháp tuyến \(\overrightarrow {n'} = \left( {0;3;2} \right)\).
\(\cos \left( {\left( {SAD} \right),\left( {SCD} \right)} \right) = \left| {\cos \left( {\overrightarrow n ,\overrightarrow {n'} } \right)} \right| = \frac{{\left| {3.0 + 0.3 + 1.2} \right|}}{{\sqrt {{3^2} + {0^2} + {1^2}} .\sqrt {{0^2} + {3^2} + {2^2}} }} = \frac{{2\sqrt {130} }}{{130}}\)
Vậy \(\left( {\left( {SAD} \right),\left( {SCD} \right)} \right) \approx {79,9^ \circ }\).
Bài 6 trang 55 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, quy tắc tính đạo hàm, và ứng dụng của đạo hàm để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và kỹ năng giải bài tập là rất quan trọng để đạt kết quả tốt trong môn Toán 12.
Bài 6 trang 55 thường bao gồm các dạng bài tập sau:
Để giải bài 6 trang 55 sách bài tập Toán 12 Chân trời sáng tạo hiệu quả, bạn có thể áp dụng các phương pháp sau:
Ví dụ: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.
Giải:
f'(x) = 3x2 + 4x - 5
Để hỗ trợ quá trình học tập, bạn có thể tham khảo các tài liệu sau:
Giải bài 6 trang 55 sách bài tập Toán 12 Chân trời sáng tạo đòi hỏi sự nắm vững kiến thức về đạo hàm và kỹ năng giải bài tập. Hy vọng với những hướng dẫn và ví dụ minh họa trên, bạn sẽ tự tin hơn trong việc giải quyết bài tập này. Chúc bạn học tập tốt!
Công thức đạo hàm | Ví dụ |
---|---|
(xn)' = nxn-1 | (x2)' = 2x |
(sin x)' = cos x | (sin x)' = cos x |
(cos x)' = -sin x | (cos x)' = -sin x |