Logo Header
  1. Môn Toán
  2. Giải bài 11 trang 18 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 11 trang 18 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 11 trang 18 Sách bài tập Toán 12 - Chân trời sáng tạo

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 11 trang 18 Sách bài tập Toán 12 - Chân trời sáng tạo. Bài viết này cung cấp phương pháp giải bài tập một cách rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin làm bài tập.

Chúng tôi luôn cập nhật đáp án nhanh chóng và chính xác, đảm bảo hỗ trợ tối đa cho quá trình học tập của bạn. Hãy cùng khám phá lời giải chi tiết ngay sau đây!

Trong một ngày, tổng chi phí để một xưởng sản xuất \(x\) (kg) thành phẩm được cho bởi hàm số \(C\left( x \right) = 2{x^3} - 30{x^2} + 177x + 2592\) (nghìn đồng). Biết giá bán mỗi kilôgam thành phẩm là 513 nghìn đồng và công suất tối đa của xưởng là 20 kg trong một ngày. Khối lượng thành phẩm xưởng nên sản xuất trong một ngày là bao nhiêu để lợi nhuận thu được của xưởng trong một ngày là cao nhất?

Đề bài

Trong một ngày, tổng chi phí để một xưởng sản xuất \(x\) (kg) thành phẩm được cho bởi hàm số \(C\left( x \right) = 2{x^3} - 30{x^2} + 177x + 2592\) (nghìn đồng). Biết giá bán mỗi kilôgam thành phẩm là 513 nghìn đồng và công suất tối đa của xưởng là 20 kg trong một ngày. Khối lượng thành phẩm xưởng nên sản xuất trong một ngày là bao nhiêu để lợi nhuận thu được của xưởng trong một ngày là cao nhất?

Phương pháp giải - Xem chi tiếtGiải bài 11 trang 18 sách bài tập toán 12 - Chân trời sáng tạo 1

Lập công thức tính lợi nhuận \(P\left( x \right)\), sau đó tìm giá trị lớn nhất của hàm số \(P\left( x \right)\).

Lời giải chi tiết

Tổng số tiền bán sản phẩm của xưởng là: \(513{\rm{x}}\) (nghìn đồng)

Lợi nhuận thu được của xưởng là:

\(P\left( x \right) = 513{\rm{x}} - C\left( x \right) = 513{\rm{x}} - \left( {2{x^3} - 30{x^2} + 177x + 2592} \right) = - 2{x^3} + 30{x^2} + 336x - 2592\)

Xét hàm số \(P\left( x \right) = - 2{x^3} + 30{x^2} + 336x - 2592\) trên đoạn \(\left[ {0;20} \right]\).

Ta có:

\(P'\left( x \right) = - 6{x^2} + 60x + 336\)

\(P'\left( x \right) = 0 \Leftrightarrow x = 14\) hoặc \(x = - 4\) (loại)

\(P\left( 0 \right) = - 2592;P\left( {14} \right) = 2504;P\left( {20} \right) = 128\)

Vậy \(\mathop {\max }\limits_{\left[ {0;20} \right]} P\left( x \right) = P\left( {14} \right) = 2504\).

Vậy khối lượng thành phẩm xưởng nên sản xuất trong một ngày là 14 kg để lợi nhuận thu được của xưởng trong một ngày là cao nhất.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 11 trang 18 sách bài tập toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục bài tập toán 12 trên nền tảng toán math. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 11 trang 18 Sách bài tập Toán 12 - Chân trời sáng tạo: Tổng quan

Bài 11 trang 18 Sách bài tập Toán 12 - Chân trời sáng tạo thuộc chương trình học Toán 12, tập trung vào việc vận dụng các kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này yêu cầu học sinh phải nắm vững các khái niệm về đạo hàm, quy tắc tính đạo hàm và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.

Nội dung bài tập

Bài 11 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của các hàm số phức tạp, đòi hỏi học sinh phải áp dụng thành thạo các quy tắc tính đạo hàm.
  • Tìm cực trị của hàm số: Sử dụng đạo hàm để tìm các điểm cực trị (cực đại, cực tiểu) của hàm số.
  • Khảo sát sự biến thiên của hàm số: Xác định khoảng đồng biến, nghịch biến của hàm số dựa trên dấu của đạo hàm.
  • Ứng dụng đạo hàm vào giải quyết các bài toán thực tế: Ví dụ như tìm giá trị lớn nhất, giá trị nhỏ nhất của một đại lượng trong một khoảng cho trước.

Lời giải chi tiết bài 11 trang 18

Để giải bài 11 trang 18 Sách bài tập Toán 12 - Chân trời sáng tạo, chúng ta cần thực hiện các bước sau:

  1. Xác định hàm số: Đọc kỹ đề bài để xác định chính xác hàm số cần khảo sát.
  2. Tính đạo hàm: Tính đạo hàm cấp nhất của hàm số.
  3. Tìm điểm cực trị: Giải phương trình đạo hàm bằng 0 để tìm các điểm nghi ngờ là cực trị.
  4. Xác định loại cực trị: Sử dụng dấu của đạo hàm cấp hai hoặc phương pháp xét dấu đạo hàm cấp nhất để xác định loại cực trị (cực đại, cực tiểu).
  5. Khảo sát sự biến thiên: Dựa vào dấu của đạo hàm cấp nhất để xác định khoảng đồng biến, nghịch biến của hàm số.
  6. Vẽ đồ thị hàm số: (Nếu yêu cầu) Sử dụng các thông tin đã tìm được để vẽ đồ thị hàm số.

Ví dụ minh họa

Giả sử bài 11 yêu cầu tìm cực trị của hàm số y = x3 - 3x2 + 2.

Bước 1: Tính đạo hàm: y' = 3x2 - 6x

Bước 2: Tìm điểm cực trị: Giải phương trình y' = 0, ta được x = 0 hoặc x = 2.

Bước 3: Xác định loại cực trị:

  • y'' = 6x - 6
  • Tại x = 0, y'' = -6 < 0, vậy hàm số đạt cực đại tại x = 0.
  • Tại x = 2, y'' = 6 > 0, vậy hàm số đạt cực tiểu tại x = 2.

Kết luận: Hàm số đạt cực đại tại x = 0, giá trị cực đại là y = 2. Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là y = -2.

Mẹo học tập hiệu quả

Để học tốt môn Toán 12 và giải quyết các bài tập về đạo hàm một cách hiệu quả, bạn nên:

  • Nắm vững lý thuyết: Hiểu rõ các khái niệm, định lý và quy tắc liên quan đến đạo hàm.
  • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để rèn luyện kỹ năng và làm quen với các dạng bài tập.
  • Sử dụng tài liệu tham khảo: Tham khảo các sách giáo khoa, sách bài tập, tài liệu ôn thi và các trang web học toán online.
  • Hỏi thầy cô giáo: Nếu gặp khó khăn, đừng ngần ngại hỏi thầy cô giáo để được hướng dẫn và giải đáp.

Kết luận

Bài 11 trang 18 Sách bài tập Toán 12 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và rèn luyện kỹ năng giải toán. Hy vọng với lời giải chi tiết và các mẹo học tập trên, bạn sẽ tự tin hơn trong việc giải quyết bài tập này và đạt kết quả tốt trong môn Toán 12.

Tài liệu, đề thi và đáp án Toán 12