Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 11 trang 18 Sách bài tập Toán 12 - Chân trời sáng tạo. Bài viết này cung cấp phương pháp giải bài tập một cách rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin làm bài tập.
Chúng tôi luôn cập nhật đáp án nhanh chóng và chính xác, đảm bảo hỗ trợ tối đa cho quá trình học tập của bạn. Hãy cùng khám phá lời giải chi tiết ngay sau đây!
Trong một ngày, tổng chi phí để một xưởng sản xuất \(x\) (kg) thành phẩm được cho bởi hàm số \(C\left( x \right) = 2{x^3} - 30{x^2} + 177x + 2592\) (nghìn đồng). Biết giá bán mỗi kilôgam thành phẩm là 513 nghìn đồng và công suất tối đa của xưởng là 20 kg trong một ngày. Khối lượng thành phẩm xưởng nên sản xuất trong một ngày là bao nhiêu để lợi nhuận thu được của xưởng trong một ngày là cao nhất?
Đề bài
Trong một ngày, tổng chi phí để một xưởng sản xuất \(x\) (kg) thành phẩm được cho bởi hàm số \(C\left( x \right) = 2{x^3} - 30{x^2} + 177x + 2592\) (nghìn đồng). Biết giá bán mỗi kilôgam thành phẩm là 513 nghìn đồng và công suất tối đa của xưởng là 20 kg trong một ngày. Khối lượng thành phẩm xưởng nên sản xuất trong một ngày là bao nhiêu để lợi nhuận thu được của xưởng trong một ngày là cao nhất?
Phương pháp giải - Xem chi tiết
Lập công thức tính lợi nhuận \(P\left( x \right)\), sau đó tìm giá trị lớn nhất của hàm số \(P\left( x \right)\).
Lời giải chi tiết
Tổng số tiền bán sản phẩm của xưởng là: \(513{\rm{x}}\) (nghìn đồng)
Lợi nhuận thu được của xưởng là:
\(P\left( x \right) = 513{\rm{x}} - C\left( x \right) = 513{\rm{x}} - \left( {2{x^3} - 30{x^2} + 177x + 2592} \right) = - 2{x^3} + 30{x^2} + 336x - 2592\)
Xét hàm số \(P\left( x \right) = - 2{x^3} + 30{x^2} + 336x - 2592\) trên đoạn \(\left[ {0;20} \right]\).
Ta có:
\(P'\left( x \right) = - 6{x^2} + 60x + 336\)
\(P'\left( x \right) = 0 \Leftrightarrow x = 14\) hoặc \(x = - 4\) (loại)
\(P\left( 0 \right) = - 2592;P\left( {14} \right) = 2504;P\left( {20} \right) = 128\)
Vậy \(\mathop {\max }\limits_{\left[ {0;20} \right]} P\left( x \right) = P\left( {14} \right) = 2504\).
Vậy khối lượng thành phẩm xưởng nên sản xuất trong một ngày là 14 kg để lợi nhuận thu được của xưởng trong một ngày là cao nhất.
Bài 11 trang 18 Sách bài tập Toán 12 - Chân trời sáng tạo thuộc chương trình học Toán 12, tập trung vào việc vận dụng các kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này yêu cầu học sinh phải nắm vững các khái niệm về đạo hàm, quy tắc tính đạo hàm và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.
Bài 11 thường bao gồm các dạng bài tập sau:
Để giải bài 11 trang 18 Sách bài tập Toán 12 - Chân trời sáng tạo, chúng ta cần thực hiện các bước sau:
Giả sử bài 11 yêu cầu tìm cực trị của hàm số y = x3 - 3x2 + 2.
Bước 1: Tính đạo hàm: y' = 3x2 - 6x
Bước 2: Tìm điểm cực trị: Giải phương trình y' = 0, ta được x = 0 hoặc x = 2.
Bước 3: Xác định loại cực trị:
Kết luận: Hàm số đạt cực đại tại x = 0, giá trị cực đại là y = 2. Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là y = -2.
Để học tốt môn Toán 12 và giải quyết các bài tập về đạo hàm một cách hiệu quả, bạn nên:
Bài 11 trang 18 Sách bài tập Toán 12 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và rèn luyện kỹ năng giải toán. Hy vọng với lời giải chi tiết và các mẹo học tập trên, bạn sẽ tự tin hơn trong việc giải quyết bài tập này và đạt kết quả tốt trong môn Toán 12.