Logo Header
  1. Môn Toán
  2. Giải bài 4 trang 60 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 4 trang 60 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 4 trang 60 Sách bài tập Toán 12 - Chân trời sáng tạo

Bài 4 trang 60 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.

Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.

Trong các phương trình sau, phương trình nào là phương trình mặt cầu? Xác định tâm và bán kính mặt của cầu đó. a) (4{x^2} + {y^2} + {z^2} - 2x - 14y - 7z + 4 = 0); b) ({x^2} + {y^2} + {z^2} + 6x - 4y - 4z - 19 = 0); c) ({x^2} + {y^2} + {z^2} - 4x - 4y - 6z + 40 = 0).

Đề bài

Trong các phương trình sau, phương trình nào là phương trình mặt cầu? Xác định tâm và bán kính mặt của cầu đó.

a) \(4{x^2} + {y^2} + {z^2} - 2x - 14y - 7z + 4 = 0\);

b) \({x^2} + {y^2} + {z^2} + 6x - 4y - 4z - 19 = 0\);

c) \({x^2} + {y^2} + {z^2} - 4x - 4y - 6z + 40 = 0\).

Phương pháp giải - Xem chi tiếtGiải bài 4 trang 60 sách bài tập toán 12 - Chân trời sáng tạo 1

Phương trình \({x^2} + {y^2} + {z^2} - 2{\rm{ax}} - 2by - 2cz + d = 0\) là phương trình mặt cầu khi và chỉ khi \({a^2} + {b^2} + {c^2} - d > 0\).

Lời giải chi tiết

a) Phương trình \(4{x^2} + {y^2} + {z^2} - 2x - 14y - 7z + 4 = 0\) không phải phương trình mặt cầu.

b) \(a = - 3,b = 2,c = 2,d = - 19,{a^2} + {b^2} + {c^2} - d = 36 > 0\)

Vậy phương trình \({x^2} + {y^2} + {z^2} + 6x - 4y - 4z - 19 = 0\) là phương trình mặt cầu có tâm \(I\left( { - 3;2;2} \right)\), bán kính \(R = \sqrt {36} = 6\).

c) \(a = 2,b = 2,c = 3,d = 40,{a^2} + {b^2} + {c^2} - d = - 23 < 0\)

Vậy phương trình \({x^2} + {y^2} + {z^2} - 4x - 4y - 6z + 40 = 0\) không phải là phương trình mặt cầu.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 4 trang 60 sách bài tập toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục toán 12 trên nền tảng đề thi toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 4 trang 60 Sách bài tập Toán 12 - Chân trời sáng tạo: Hướng dẫn chi tiết

Bài 4 trang 60 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm của hàm số. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản về đạo hàm, bao gồm:

  • Định nghĩa đạo hàm
  • Các quy tắc tính đạo hàm (quy tắc tổng, hiệu, tích, thương, hàm hợp)
  • Đạo hàm của các hàm số cơ bản (hàm đa thức, hàm lượng giác, hàm mũ, hàm logarit)

Dưới đây là đề bài và lời giải chi tiết bài 4 trang 60 sách bài tập Toán 12 Chân trời sáng tạo:

Đề bài:

Cho hàm số f(x) = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.

Lời giải:

  1. Tính đạo hàm f'(x):
  2. f'(x) = 3x2 - 6x

  3. Tìm các điểm làm f'(x) = 0:
  4. 3x2 - 6x = 0

    3x(x - 2) = 0

    Suy ra x = 0 hoặc x = 2

  5. Lập bảng xét dấu f'(x):
  6. x-∞02+∞
    f'(x)+-+
    f(x)Đồng biếnNghịch biếnĐồng biến
  7. Kết luận:
  8. Hàm số f(x) đạt cực đại tại x = 0, giá trị cực đại là f(0) = 2.

    Hàm số f(x) đạt cực tiểu tại x = 2, giá trị cực tiểu là f(2) = -2.

Lưu ý:

  • Để tìm các điểm cực trị của hàm số, ta cần tìm các điểm làm đạo hàm bậc nhất bằng 0 và xét dấu đạo hàm bậc nhất để xác định tính đơn điệu của hàm số.
  • Nếu đạo hàm bậc nhất đổi dấu từ dương sang âm tại một điểm, thì điểm đó là điểm cực đại.
  • Nếu đạo hàm bậc nhất đổi dấu từ âm sang dương tại một điểm, thì điểm đó là điểm cực tiểu.

Các bài tập tương tự

Để củng cố kiến thức về đạo hàm và các ứng dụng của đạo hàm, bạn có thể tham khảo các bài tập tương tự sau:

  • Bài 1 trang 60 Sách bài tập Toán 12 Chân trời sáng tạo
  • Bài 2 trang 60 Sách bài tập Toán 12 Chân trời sáng tạo
  • Bài 3 trang 60 Sách bài tập Toán 12 Chân trời sáng tạo

Chúc bạn học tốt!

Hy vọng với lời giải chi tiết này, bạn đã hiểu rõ cách giải bài 4 trang 60 sách bài tập Toán 12 Chân trời sáng tạo. Hãy luyện tập thêm nhiều bài tập khác để nâng cao kỹ năng giải toán của mình.

Tài liệu, đề thi và đáp án Toán 12