Bài 4 trang 60 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.
Trong các phương trình sau, phương trình nào là phương trình mặt cầu? Xác định tâm và bán kính mặt của cầu đó. a) (4{x^2} + {y^2} + {z^2} - 2x - 14y - 7z + 4 = 0); b) ({x^2} + {y^2} + {z^2} + 6x - 4y - 4z - 19 = 0); c) ({x^2} + {y^2} + {z^2} - 4x - 4y - 6z + 40 = 0).
Đề bài
Trong các phương trình sau, phương trình nào là phương trình mặt cầu? Xác định tâm và bán kính mặt của cầu đó.
a) \(4{x^2} + {y^2} + {z^2} - 2x - 14y - 7z + 4 = 0\);
b) \({x^2} + {y^2} + {z^2} + 6x - 4y - 4z - 19 = 0\);
c) \({x^2} + {y^2} + {z^2} - 4x - 4y - 6z + 40 = 0\).
Phương pháp giải - Xem chi tiết
Phương trình \({x^2} + {y^2} + {z^2} - 2{\rm{ax}} - 2by - 2cz + d = 0\) là phương trình mặt cầu khi và chỉ khi \({a^2} + {b^2} + {c^2} - d > 0\).
Lời giải chi tiết
a) Phương trình \(4{x^2} + {y^2} + {z^2} - 2x - 14y - 7z + 4 = 0\) không phải phương trình mặt cầu.
b) \(a = - 3,b = 2,c = 2,d = - 19,{a^2} + {b^2} + {c^2} - d = 36 > 0\)
Vậy phương trình \({x^2} + {y^2} + {z^2} + 6x - 4y - 4z - 19 = 0\) là phương trình mặt cầu có tâm \(I\left( { - 3;2;2} \right)\), bán kính \(R = \sqrt {36} = 6\).
c) \(a = 2,b = 2,c = 3,d = 40,{a^2} + {b^2} + {c^2} - d = - 23 < 0\)
Vậy phương trình \({x^2} + {y^2} + {z^2} - 4x - 4y - 6z + 40 = 0\) không phải là phương trình mặt cầu.
Bài 4 trang 60 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm của hàm số. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản về đạo hàm, bao gồm:
Dưới đây là đề bài và lời giải chi tiết bài 4 trang 60 sách bài tập Toán 12 Chân trời sáng tạo:
Cho hàm số f(x) = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.
f'(x) = 3x2 - 6x
3x2 - 6x = 0
3x(x - 2) = 0
Suy ra x = 0 hoặc x = 2
x | -∞ | 0 | 2 | +∞ |
---|---|---|---|---|
f'(x) | + | - | + | |
f(x) | Đồng biến | Nghịch biến | Đồng biến |
Hàm số f(x) đạt cực đại tại x = 0, giá trị cực đại là f(0) = 2.
Hàm số f(x) đạt cực tiểu tại x = 2, giá trị cực tiểu là f(2) = -2.
Lưu ý:
Để củng cố kiến thức về đạo hàm và các ứng dụng của đạo hàm, bạn có thể tham khảo các bài tập tương tự sau:
Chúc bạn học tốt!
Hy vọng với lời giải chi tiết này, bạn đã hiểu rõ cách giải bài 4 trang 60 sách bài tập Toán 12 Chân trời sáng tạo. Hãy luyện tập thêm nhiều bài tập khác để nâng cao kỹ năng giải toán của mình.