Logo Header
  1. Môn Toán
  2. Giải bài 3 trang 59 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 3 trang 59 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 3 trang 59 Sách bài tập Toán 12 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 3 trang 59 sách bài tập Toán 12 Chân trời sáng tạo. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các kỳ thi.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 3 trang 59 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.

Xác định tâm và bán kính của mặt cầu có phương trình sau: a) (left( S right):{left( {x - 7} right)^2} + {left( {y - 3} right)^2} + {left( {z + 4} right)^2} = 49); b) (left( {S'} right):{x^2} + {left( {y + 1} right)^2} + {left( {z - 2} right)^2} = 11); c) (left( S'' right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}=25)

Đề bài

Xác định tâm và bán kính của mặt cầu có phương trình sau:

a) \(\left( S \right):{\left( {x - 7} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z + 4} \right)^2} = 49\);

b) \(\left( {S'} \right):{x^2} + {\left( {y + 1} \right)^2} + {\left( {z - 2} \right)^2} = 11\);

c) \(\left( S'' \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}=25\).

Phương pháp giải - Xem chi tiếtGiải bài 3 trang 59 sách bài tập toán 12 - Chân trời sáng tạo 1

Mặt cầu \(\left( S \right):{\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\) có tâm \(I\left( {a;b;c} \right)\) bán kính \(R\).

Lời giải chi tiết

a) Mặt cầu \(\left( S \right):{\left( {x - 7} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z + 4} \right)^2} = 49\) có tâm \(I\left( {7;3; - 4} \right)\), bán kính \(R = \sqrt {49} = 7\).

b) Mặt cầu \(\left( {S'} \right):{x^2} + {\left( {y + 1} \right)^2} + {\left( {z - 2} \right)^2} = 11\) có tâm \(I\left( {0; - 1;2} \right)\), bán kính \(R = \sqrt {11} \).

c) Mặt cầu \(\left( S'' \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}=25\) có tâm \(I\left( {0;0;0} \right)\), bán kính \(R = \sqrt {25} = 5\).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 3 trang 59 sách bài tập toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục bài toán lớp 12 trên nền tảng soạn toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 3 trang 59 Sách bài tập Toán 12 - Chân trời sáng tạo: Tổng quan

Bài 3 trang 59 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của các hàm số cơ bản như hàm đa thức, hàm lượng giác, hàm mũ, hàm logarit và các phép toán trên hàm số. Việc nắm vững kiến thức về đạo hàm là vô cùng quan trọng, không chỉ để giải quyết các bài toán cụ thể mà còn là nền tảng cho việc học các kiến thức toán học nâng cao hơn.

Nội dung chi tiết bài 3 trang 59

Bài 3 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của một hàm số cho trước.
  • Tìm đạo hàm cấp hai: Yêu cầu tìm đạo hàm cấp hai của một hàm số.
  • Vận dụng đạo hàm để giải quyết các bài toán thực tế: Ví dụ như tìm vận tốc, gia tốc, hoặc xác định khoảng đồng biến, nghịch biến của hàm số.

Phương pháp giải bài tập đạo hàm

Để giải quyết hiệu quả các bài tập về đạo hàm, bạn cần:

  1. Nắm vững các công thức đạo hàm cơ bản: Ví dụ: (xn)' = nxn-1, (sin x)' = cos x, (cos x)' = -sin x, (ex)' = ex, (ln x)' = 1/x.
  2. Sử dụng các quy tắc tính đạo hàm: Quy tắc cộng, trừ, nhân, chia, quy tắc hàm hợp.
  3. Biến đổi đại số: Đơn giản hóa biểu thức trước khi tính đạo hàm.
  4. Kiểm tra lại kết quả: Đảm bảo tính chính xác của đáp án.

Ví dụ minh họa giải bài 3 trang 59

Ví dụ: Tính đạo hàm của hàm số f(x) = 3x2 + 2x - 1.

Giải:

f'(x) = (3x2)' + (2x)' - (1)'

f'(x) = 6x + 2 - 0

f'(x) = 6x + 2

Lưu ý khi giải bài tập đạo hàm

Một số lưu ý quan trọng khi giải bài tập đạo hàm:

  • Luôn kiểm tra kỹ các công thức đạo hàm cơ bản.
  • Chú ý đến thứ tự thực hiện các phép toán.
  • Sử dụng quy tắc hàm hợp một cách cẩn thận.
  • Đừng quên kiểm tra lại kết quả sau khi tính toán.

Bài tập luyện tập

Để củng cố kiến thức, bạn có thể tự giải các bài tập sau:

  • Tính đạo hàm của hàm số g(x) = x3 - 4x + 5.
  • Tìm đạo hàm cấp hai của hàm số h(x) = sin(2x).
  • Cho hàm số y = ex + ln(x). Tính y'.

Kết luận

Bài 3 trang 59 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp bạn rèn luyện kỹ năng tính đạo hàm. Bằng cách nắm vững các công thức, quy tắc và phương pháp giải, bạn có thể tự tin giải quyết các bài toán tương tự và đạt kết quả tốt trong học tập. Chúc bạn thành công!

Tài liệu, đề thi và đáp án Toán 12