Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 3 trang 59 sách bài tập Toán 12 Chân trời sáng tạo. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các kỳ thi.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 3 trang 59 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
Xác định tâm và bán kính của mặt cầu có phương trình sau: a) (left( S right):{left( {x - 7} right)^2} + {left( {y - 3} right)^2} + {left( {z + 4} right)^2} = 49); b) (left( {S'} right):{x^2} + {left( {y + 1} right)^2} + {left( {z - 2} right)^2} = 11); c) (left( S'' right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}=25)
Đề bài
Xác định tâm và bán kính của mặt cầu có phương trình sau:
a) \(\left( S \right):{\left( {x - 7} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z + 4} \right)^2} = 49\);
b) \(\left( {S'} \right):{x^2} + {\left( {y + 1} \right)^2} + {\left( {z - 2} \right)^2} = 11\);
c) \(\left( S'' \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}=25\).
Phương pháp giải - Xem chi tiết
Mặt cầu \(\left( S \right):{\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\) có tâm \(I\left( {a;b;c} \right)\) bán kính \(R\).
Lời giải chi tiết
a) Mặt cầu \(\left( S \right):{\left( {x - 7} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z + 4} \right)^2} = 49\) có tâm \(I\left( {7;3; - 4} \right)\), bán kính \(R = \sqrt {49} = 7\).
b) Mặt cầu \(\left( {S'} \right):{x^2} + {\left( {y + 1} \right)^2} + {\left( {z - 2} \right)^2} = 11\) có tâm \(I\left( {0; - 1;2} \right)\), bán kính \(R = \sqrt {11} \).
c) Mặt cầu \(\left( S'' \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}=25\) có tâm \(I\left( {0;0;0} \right)\), bán kính \(R = \sqrt {25} = 5\).
Bài 3 trang 59 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của các hàm số cơ bản như hàm đa thức, hàm lượng giác, hàm mũ, hàm logarit và các phép toán trên hàm số. Việc nắm vững kiến thức về đạo hàm là vô cùng quan trọng, không chỉ để giải quyết các bài toán cụ thể mà còn là nền tảng cho việc học các kiến thức toán học nâng cao hơn.
Bài 3 thường bao gồm các dạng bài tập sau:
Để giải quyết hiệu quả các bài tập về đạo hàm, bạn cần:
Ví dụ: Tính đạo hàm của hàm số f(x) = 3x2 + 2x - 1.
Giải:
f'(x) = (3x2)' + (2x)' - (1)'
f'(x) = 6x + 2 - 0
f'(x) = 6x + 2
Một số lưu ý quan trọng khi giải bài tập đạo hàm:
Để củng cố kiến thức, bạn có thể tự giải các bài tập sau:
Bài 3 trang 59 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp bạn rèn luyện kỹ năng tính đạo hàm. Bằng cách nắm vững các công thức, quy tắc và phương pháp giải, bạn có thể tự tin giải quyết các bài toán tương tự và đạt kết quả tốt trong học tập. Chúc bạn thành công!