Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 1 trang 85 sách bài tập Toán 12 Chân trời sáng tạo. Bài viết này cung cấp phương pháp giải bài tập, đáp án chính xác và các kiến thức liên quan để giúp học sinh hiểu rõ hơn về nội dung bài học.
Chúng tôi luôn cố gắng cung cấp những giải pháp học tập tốt nhất, giúp các bạn học sinh nắm vững kiến thức và đạt kết quả cao trong môn Toán.
Chọn đáp án đúng. Cho hai biến cố (A) và (B) có (Pleft( A right) = 0,4;Pleft( B right) = 0,8) và (Pleft( {A|B} right) = 0,25). a) Xác suất của biến cố (A) giao (B) là A. 0,1. B. 0,2. C. 0,25. D. 0,4. b) Xác suất của (B) với điều kiện (A) là A. 0,2. B. 0,25. C. 0,5. D. 0,75. b) Xác suất của biến cố (A) với điều kiện (A cup B) là A. 0,4. B. 0,5. C. 0,8. D. 1.
Đề bài
Chọn đáp án đúng.
Cho hai biến cố \(A\) và \(B\) có \(P\left( A \right) = 0,4;P\left( B \right) = 0,8\) và \(P\left( {A|B} \right) = 0,25\).
a) Xác suất của biến cố \(A\) giao \(B\) là
A. 0,1.
B. 0,2.
C. 0,25.
D. 0,4.
b) Xác suất của \(B\) với điều kiện \(A\) là
A. 0,2.
B. 0,25.
C. 0,5.
D. 0,75.
c) Xác suất của biến cố \(A\) với điều kiện \(A \cup B\) là
A. 0,4.
B. 0,5.
C. 0,8.
D. 1.
Phương pháp giải - Xem chi tiết
‒ Sử dụng công thức: \(P\left( {AB} \right) = P\left( B \right).P\left( {A|B} \right)\).
‒ Sử dụng công thức tính xác suất của \(A\) với điều kiện \(B\): \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}}\).
‒ Sử dụng quy tắc cộng xác suất: \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right)\).
Lời giải chi tiết
a) Ta có: \(P\left( {AB} \right) = P\left( B \right).P\left( {A|B} \right) = 0,8.0,25 = 0,2\).
Chọn B
b) Theo công thức tính xác suất có điều kiện, ta có: \(P\left( {B|A} \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{{0,2}}{{0,4}} = 0,5\).
Chọn C
c) Theo quy tắc cộng xác suất ta có: \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = 0,4 + 0,8 - 0,2 = 1\).
Theo công thức tính xác suất có điều kiện, ta có:
\(P\left( {B|A \cup B} \right) = \frac{{P\left( {B\left( {A \cup B} \right)} \right)}}{{P\left( {A \cup B} \right)}} = \frac{{P\left( A \right)}}{{P\left( {A \cup B} \right)}} = \frac{{0,4}}{1} = 0,4\).
Chọn A
Bài 1 trang 85 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Việc nắm vững các công thức đạo hàm cơ bản và kỹ năng tính đạo hàm là yếu tố then chốt để hoàn thành bài tập này một cách hiệu quả.
Bài 1 thường bao gồm các dạng bài tập sau:
Để giải bài 1 trang 85 sách bài tập Toán 12 Chân trời sáng tạo, bạn có thể áp dụng các phương pháp sau:
Bài 1.1: Tính đạo hàm của hàm số f(x) = x2 + 3x - 2 tại x = 1.
Giải:
f'(x) = 2x + 3
f'(1) = 2(1) + 3 = 5
Vậy, đạo hàm của hàm số f(x) tại x = 1 là 5.
Bài 1.2: Tìm đạo hàm của hàm số g(x) = sin(x) * cos(x).
Giải:
g'(x) = cos(x) * cos(x) + sin(x) * (-sin(x))
g'(x) = cos2(x) - sin2(x)
Vậy, đạo hàm của hàm số g(x) là cos2(x) - sin2(x).
Ví dụ: Một vật chuyển động theo phương trình s(t) = t3 - 6t2 + 9t + 2, trong đó s(t) là quãng đường đi được sau thời gian t (giây). Tính vận tốc của vật tại thời điểm t = 2 giây.
Giải:
Vận tốc của vật là đạo hàm của quãng đường theo thời gian: v(t) = s'(t)
s'(t) = 3t2 - 12t + 9
v(2) = 3(2)2 - 12(2) + 9 = 12 - 24 + 9 = -3
Vậy, vận tốc của vật tại thời điểm t = 2 giây là -3 m/s.
Để học tập và ôn luyện kiến thức về đạo hàm, bạn có thể tham khảo các tài liệu sau:
Bài 1 trang 85 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với hướng dẫn chi tiết và các ví dụ minh họa trên, các bạn học sinh sẽ tự tin giải quyết bài tập này một cách hiệu quả. Chúc các bạn học tốt!