Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 5 trang 63 sách bài tập Toán 12 chương trình Chân trời sáng tạo. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các kỳ thi.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 5 trang 63 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
Cho hình lập phương \(ABCD.A'B'C'D'\). Gọi \(O,O'\)lần lượt là tâm của các hình vuông \(ABCD\) và \(A'B'C'D'\); \(I\) là giao điểm của \(AC'\) và \(A'C\). Chứng minh rằng: a) \(\overrightarrow {OA'} + \overrightarrow {OB'} + \overrightarrow {OC'} + \overrightarrow {OD'} = 4\overrightarrow {OO'} \); b) \(\overrightarrow {DB} + \overrightarrow {DD'} = 2\overrightarrow {DI} \).
Đề bài
Cho hình lập phương \(ABCD.A'B'C'D'\). Gọi \(O,O'\)lần lượt là tâm của các hình vuông \(ABCD\) và \(A'B'C'D'\); \(I\) là giao điểm của \(AC'\) và \(A'C\). Chứng minh rằng:
a) \(\overrightarrow {OA'} + \overrightarrow {OB'} + \overrightarrow {OC'} + \overrightarrow {OD'} = 4\overrightarrow {OO'} \);
b) \(\overrightarrow {DB} + \overrightarrow {DD'} = 2\overrightarrow {DI} \).
Phương pháp giải - Xem chi tiết
Sử dụng quy tắc hình bình hành.
Lời giải chi tiết
a) \(\overrightarrow {OA'} + \overrightarrow {OB'} + \overrightarrow {OC'} + \overrightarrow {OD'} = \left( {\overrightarrow {OA'} + \overrightarrow {OC'} } \right) + \left( {\overrightarrow {OB'} + \overrightarrow {OD'} } \right) = 2\overrightarrow {OO'} + 2\overrightarrow {OO'} = 4\overrightarrow {OO'} \)
b) Ta có: \(A'B'\parallel C{\rm{D}},A'B' = C{\rm{D}}\)
Suy ra \(A'B'C{\rm{D}}\) là hình bình hành.
Do đó \(A'C\) và \(B'D\) cắt nhau tại trung điểm mỗi đường.
Vì \(I\) là trung điểm của \(A'C\) nên \(I\) là trung điểm của \(B'D\).
Suy ra \(\overrightarrow {DB} + \overrightarrow {DD'} = \overrightarrow {DB'} = 2\overrightarrow {DI} \).
Bài 5 trang 63 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của các hàm số cơ bản như hàm đa thức, hàm lượng giác, hàm mũ, hàm logarit và các phép toán trên hàm số. Việc nắm vững kiến thức về đạo hàm là nền tảng quan trọng để giải quyết các bài toán liên quan đến cực trị, điểm uốn, và các ứng dụng khác của đạo hàm trong toán học.
Bài 5 thường bao gồm các dạng bài tập sau:
Để tính đạo hàm của hàm số f(x) = x^3 - 2x^2 + 5x - 1, ta áp dụng quy tắc đạo hàm của tổng và hiệu, cũng như quy tắc đạo hàm của lũy thừa:
f'(x) = (x^3)' - (2x^2)' + (5x)' - (1)'
f'(x) = 3x^2 - 4x + 5 - 0
f'(x) = 3x^2 - 4x + 5
Để tìm đạo hàm cấp hai của hàm số g(x) = sin(2x), ta thực hiện các bước sau:
g'(x) = (sin(2x))' = cos(2x) * 2 = 2cos(2x)
g''(x) = (2cos(2x))' = -2sin(2x) * 2 = -4sin(2x)
Giả sử vận tốc của một vật tại thời điểm t được cho bởi hàm số v(t) = 3t^2 - 6t + 2. Để tìm vận tốc của vật tại thời điểm t = 2, ta thay t = 2 vào hàm v(t):
v(2) = 3(2)^2 - 6(2) + 2 = 12 - 12 + 2 = 2
Vậy vận tốc của vật tại thời điểm t = 2 là 2.
Ngoài sách bài tập, bạn có thể tham khảo thêm các tài liệu sau để học toán 12 hiệu quả:
Bài 5 trang 63 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm. Hy vọng với hướng dẫn chi tiết và các lưu ý trên, bạn sẽ tự tin giải quyết bài tập này và đạt kết quả tốt trong các kỳ thi.