Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 2 trang 64 sách bài tập Toán 12 Chân trời sáng tạo. Bài viết này cung cấp phương pháp giải bài tập một cách rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cập nhật nhanh chóng và chính xác các lời giải bài tập Toán 12, đáp ứng nhu cầu học tập của học sinh trên toàn quốc.
Cho hai mặt phẳng \(\left( \alpha \right):x - y + nz--3 = 0\) và \(\left( \beta \right):2x + my + 2z + 6 = 0\). Với giá trị nào của \(m,n\) thì \(\left( \alpha \right)\) song song với \(\left( \beta \right)\)?
Đề bài
Cho hai mặt phẳng \(\left( \alpha \right):x - y + nz--3 = 0\) và \(\left( \beta \right):2x + my + 2z + 6 = 0\).
Với giá trị nào của \(m,n\) thì \(\left( \alpha \right)\) song song với \(\left( \beta \right)\)?
Phương pháp giải - Xem chi tiết
Cho hai mặt phẳng \(\left( {{\alpha _1}} \right):{A_1}x + {B_1}y + {C_1}{\rm{z}} + {D_1} = 0\) và \(\left( {{\alpha _2}} \right):{A_2}x + {B_2}y + {C_2}{\rm{z}} + {D_2} = 0\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}} = \left( {{A_1};{B_1};{C_1}} \right),\overrightarrow {{n_2}} = \left( {{A_2};{B_2};{C_2}} \right)\).
Khi đó \(\left( {{\alpha _1}} \right)\parallel \left( {{\alpha _2}} \right) \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow {{n_1}} = k\overrightarrow {{n_2}} \\{D_1} \ne k{{\rm{D}}_2}\end{array} \right.\left( {k \in \mathbb{R}} \right)\)
Lời giải chi tiết
Mặt phẳng \(\left( \alpha \right)\) có vectơ pháp tuyến \(\overrightarrow {{n_1}} = \left( {1; - 1;n} \right)\), mặt phẳng \(\left( \beta \right)\) có vectơ pháp tuyến \(\overrightarrow {{n_2}} = \left( {2;m;2} \right)\).
\(\left( \alpha \right)\parallel \left( \beta \right) \Leftrightarrow \left( {{\alpha _1}} \right)\parallel \left( {{\alpha _2}} \right) \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow {{n_1}} = k\overrightarrow {{n_2}} \\{D_1} \ne k{{\rm{D}}_2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}1 = k.2\\ - 1 = k.m\\n = k.2\\ - 3 \ne k.6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}k = \frac{1}{2}\\m = - 2\\n = 1\end{array} \right.\).
Bài 2 trang 64 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, quy tắc tính đạo hàm, và ứng dụng của đạo hàm để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và kỹ năng giải bài tập là rất quan trọng để đạt kết quả tốt trong môn Toán 12.
Bài 2 trang 64 thường bao gồm các dạng bài tập sau:
Để giải bài 2 trang 64 sách bài tập Toán 12 Chân trời sáng tạo hiệu quả, bạn có thể áp dụng các phương pháp sau:
Bài toán: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1 tại x = 2.
Giải:
f'(x) = 3x2 + 4x - 5
f'(2) = 3(2)2 + 4(2) - 5 = 12 + 8 - 5 = 15
Vậy, đạo hàm của hàm số f(x) tại x = 2 là 15.
Để củng cố kiến thức và kỹ năng giải bài tập, bạn có thể tham khảo các bài tập tương tự sau:
Bài 2 trang 64 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng giải toán về đạo hàm. Bằng cách nắm vững kiến thức nền tảng, áp dụng các phương pháp giải bài tập hiệu quả, và luyện tập thường xuyên, bạn có thể tự tin giải quyết các bài toán tương tự và đạt kết quả tốt trong môn Toán 12.
Công thức | Mô tả |
---|---|
(xn)' = nxn-1 | Đạo hàm của lũy thừa |
(u + v)' = u' + v' | Đạo hàm của tổng |
(u - v)' = u' - v' | Đạo hàm của hiệu |