Logo Header
  1. Môn Toán
  2. Giải bài 5 trang 36 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 5 trang 36 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 5 trang 36 Sách bài tập Toán 12 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài 5 trang 36 sách bài tập Toán 12 chương trình Chân trời sáng tạo một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và dễ tiếp thu nhất.

Cho hàm số (y = fleft( x right) = frac{{{x^2} + 2{rm{x}} - m}}{{{rm{x}} - 1}}) ((m) là tham số). Tìm (m) để đồ thị hàm số đã cho có hai cực trị.

Đề bài

Cho hàm số \(y = f\left( x \right) = \frac{{{x^2} + 2{\rm{x}} - m}}{{{\rm{x}} - 1}}\) (\(m\) là tham số). Tìm \(m\) để đồ thị hàm số đã cho có hai cực trị.

Phương pháp giải - Xem chi tiếtGiải bài 5 trang 36 sách bài tập toán 12 - Chân trời sáng tạo 1

Để đồ hàm số đã cho có hai điểm cực trị thì phương trình \(y' = 0\) có hai nghiệm phân biệt.

Lời giải chi tiết

Tập xác định: \(D = \mathbb{R}\backslash \left\{ 1 \right\}\).

Đạo hàm

\(\begin{array}{l}y' = \frac{{{{\left( {{x^2} + 2{\rm{x}} - m} \right)}^\prime }\left( {x - 1} \right) - \left( {{x^2} + 2{\rm{x}} - m} \right){{\left( {x - 1} \right)}^\prime }}}{{{{\left( {x - 1} \right)}^2}}}\\ = \frac{{\left( {2{\rm{x}} + 2} \right)\left( {x - 1} \right) - \left( {{x^2} + 2{\rm{x}} - m} \right)}}{{{{\left( {x - 1} \right)}^2}}} = \frac{{{x^2} - 2{\rm{x}} + m - 2}}{{{{\left( {x - 1} \right)}^2}}}\end{array}\)

Để đồ thị hàm số đã cho có hai cực trị thì phương trình \(y' = 0\) có hai nghiệm phân biệt, tức là phương trình \({x^2} - 2{\rm{x}} + m - 2 = 0\) có hai nghiệm phân biệt khác 1.

Khi đó: \(\left\{ \begin{array}{l}\Delta ' = {\left( { - 1} \right)^2} - \left( {m - 2} \right) > 0\\{1^2} - 2.1 + m - 2 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3 - m > 0\\m - 3 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < 3\\m \ne 3\end{array} \right. \Leftrightarrow m < 3\).

Vậy với \(m < 3\) thì đồ thị hàm số đã cho có hai điểm cực trị.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 5 trang 36 sách bài tập toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục sgk toán 12 trên nền tảng tài liệu toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 5 trang 36 Sách bài tập Toán 12 - Chân trời sáng tạo: Tổng quan

Bài 5 trang 36 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, quy tắc tính đạo hàm, và ứng dụng của đạo hàm để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và kỹ năng giải toán là yếu tố then chốt để hoàn thành bài tập này một cách hiệu quả.

Nội dung bài tập

Bài 5 trang 36 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của các hàm số đơn thức, đa thức, và các hàm số phức tạp hơn.
  • Áp dụng quy tắc tính đạo hàm: Vận dụng các quy tắc như quy tắc tích, quy tắc thương, quy tắc hàm hợp để tính đạo hàm.
  • Tìm đạo hàm cấp hai: Tính đạo hàm bậc hai của hàm số.
  • Ứng dụng đạo hàm để giải quyết các bài toán thực tế: Ví dụ như tìm điểm cực trị, khoảng đơn điệu của hàm số.

Lời giải chi tiết bài 5 trang 36

Để giúp bạn hiểu rõ hơn về cách giải bài tập này, chúng tôi sẽ trình bày lời giải chi tiết cho từng phần của bài 5 trang 36:

Câu a: Tính đạo hàm của hàm số f(x) = x^3 + 2x^2 - 5x + 1

Lời giải:

Áp dụng quy tắc đạo hàm của tổng và hiệu, ta có:

f'(x) = (x^3)' + (2x^2)' - (5x)' + (1)'

f'(x) = 3x^2 + 4x - 5 + 0

f'(x) = 3x^2 + 4x - 5

Câu b: Tính đạo hàm của hàm số g(x) = (x^2 + 1)(x - 2)

Lời giải:

Áp dụng quy tắc tích, ta có:

g'(x) = (x^2 + 1)'(x - 2) + (x^2 + 1)(x - 2)'

g'(x) = (2x)(x - 2) + (x^2 + 1)(1)

g'(x) = 2x^2 - 4x + x^2 + 1

g'(x) = 3x^2 - 4x + 1

Câu c: Tìm đạo hàm cấp hai của hàm số h(x) = x^4 - 3x^2 + 2

Lời giải:

Đầu tiên, ta tìm đạo hàm cấp một:

h'(x) = (x^4)' - 3(x^2)' + (2)'

h'(x) = 4x^3 - 6x + 0

h'(x) = 4x^3 - 6x

Tiếp theo, ta tìm đạo hàm cấp hai:

h''(x) = (4x^3)' - (6x)'

h''(x) = 12x^2 - 6

Mẹo giải bài tập đạo hàm hiệu quả

Để giải các bài tập về đạo hàm một cách hiệu quả, bạn nên:

  • Nắm vững các quy tắc tính đạo hàm: Quy tắc đạo hàm của tổng, hiệu, tích, thương, hàm hợp.
  • Thực hành thường xuyên: Giải nhiều bài tập khác nhau để làm quen với các dạng bài và rèn luyện kỹ năng.
  • Kiểm tra lại kết quả: Sau khi giải xong, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.
  • Sử dụng các công cụ hỗ trợ: Các công cụ tính đạo hàm online có thể giúp bạn kiểm tra lại kết quả và hiểu rõ hơn về quá trình tính toán.

Kết luận

Bài 5 trang 36 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và các mẹo giải bài tập mà chúng tôi đã cung cấp, bạn sẽ tự tin hơn khi giải quyết các bài toán tương tự. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 12