Logo Header
  1. Môn Toán
  2. Giải bài 12 trang 78 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 12 trang 78 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 12 trang 78 Sách bài tập Toán 12 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12 sách bài tập Chân trời sáng tạo. Bài viết này sẽ hướng dẫn bạn giải bài 12 trang 78 một cách nhanh chóng và hiệu quả.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong các kỳ thi.

Cho điểm \(A\left( {3; - 1;1} \right)\). Hình chiếu vuông góc của điểm \(A\) trên mặt phẳng \(\left( {Oyz} \right)\) là điểm A. \(M\left( {3;0;0} \right)\). B. \(N\left( {0; - 1;1} \right)\). C. \(P\left( {0; - 1;0} \right)\). D. \(Q\left( {0;0;1} \right)\).

Đề bài

Cho điểm \(A\left( {3; - 1;1} \right)\). Hình chiếu vuông góc của điểm \(A\) trên mặt phẳng \(\left( {Oyz} \right)\) là điểm

A. \(M\left( {3;0;0} \right)\).

B. \(N\left( {0; - 1;1} \right)\).

C. \(P\left( {0; - 1;0} \right)\).

D. \(Q\left( {0;0;1} \right)\).

Phương pháp giải - Xem chi tiếtGiải bài 12 trang 78 sách bài tập toán 12 - Chân trời sáng tạo 1

Cho điểm \(M\left( {a;b;c} \right)\). \({M_1},{M_2},{M_3}\) lần lượt là hình chiếu của điểm \(M\) trên các mặt phẳng toạ độ \(\left( {Oxy} \right),\left( {Oyz} \right),\)\(\left( {Ozx} \right)\) thì \({M_1}\left( {a;b;0} \right),{M_2}\left( {0;b;c} \right),{M_3}\left( {a;0;c} \right)\).

Lời giải chi tiết

Gọi \(A'\) là hình chiếu vuông góc của điểm \(A\) trên mặt phẳng \(\left( {Oyz} \right)\) thì \(A'\left( {0; - 1;1} \right) \equiv N\).

Chọn B.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 12 trang 78 sách bài tập toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục toán lớp 12 trên nền tảng môn toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 12 trang 78 Sách bài tập Toán 12 - Chân trời sáng tạo: Tổng quan

Bài 12 trang 78 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của hàm số, đặc biệt là đạo hàm của tổng, hiệu, tích, thương và đạo hàm hàm hợp. Việc nắm vững các quy tắc này là nền tảng để giải quyết các bài toán phức tạp hơn trong chương trình học.

Nội dung bài tập 12 trang 78

Bài tập 12 thường bao gồm các dạng câu hỏi sau:

  • Tính đạo hàm của hàm số cho trước.
  • Tìm đạo hàm cấp hai của hàm số.
  • Xác định các điểm mà tại đó hàm số không có đạo hàm.
  • Vận dụng đạo hàm để giải các bài toán liên quan đến tiếp tuyến của đồ thị hàm số.

Phương pháp giải bài tập 12 trang 78

Để giải bài tập 12 trang 78 hiệu quả, bạn cần:

  1. Nắm vững các quy tắc tính đạo hàm cơ bản.
  2. Phân tích cấu trúc của hàm số để lựa chọn phương pháp tính đạo hàm phù hợp.
  3. Thực hành giải nhiều bài tập tương tự để rèn luyện kỹ năng.
  4. Kiểm tra lại kết quả để đảm bảo tính chính xác.

Ví dụ minh họa giải bài 12 trang 78

Ví dụ: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.

Giải:

Áp dụng quy tắc đạo hàm của tổng, hiệu và lũy thừa, ta có:

f'(x) = 3x2 + 4x - 5

Các dạng bài tập thường gặp và cách giải

Dạng 1: Tính đạo hàm của hàm số đa thức

Sử dụng quy tắc đạo hàm của lũy thừa: (xn)' = nxn-1 và quy tắc đạo hàm của tổng, hiệu.

Dạng 2: Tính đạo hàm của hàm số lượng giác

Sử dụng các công thức đạo hàm của các hàm lượng giác cơ bản: (sin x)' = cos x, (cos x)' = -sin x, (tan x)' = 1/cos2 x, (cot x)' = -1/sin2 x.

Dạng 3: Tính đạo hàm của hàm số mũ và logarit

Sử dụng các công thức đạo hàm của hàm số mũ và logarit: (ex)' = ex, (ax)' = axln a, (loga x)' = 1/(xln a).

Lưu ý khi giải bài tập

  • Luôn kiểm tra lại các bước tính toán để tránh sai sót.
  • Sử dụng máy tính bỏ túi để kiểm tra kết quả.
  • Tham khảo các tài liệu học tập và bài giảng để hiểu rõ hơn về lý thuyết.

Bài tập luyện tập

Để củng cố kiến thức, bạn có thể tự giải các bài tập sau:

  • Tính đạo hàm của hàm số g(x) = 2x4 - 3x2 + x - 7.
  • Tìm đạo hàm cấp hai của hàm số h(x) = sin(2x).

Kết luận

Bài 12 trang 78 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp bạn rèn luyện kỹ năng tính đạo hàm. Bằng cách nắm vững các quy tắc và phương pháp giải, bạn có thể tự tin giải quyết các bài toán tương tự và đạt kết quả tốt trong các kỳ thi.

Hy vọng bài viết này đã cung cấp cho bạn những thông tin hữu ích. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 12