Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài 5 trang 25 sách bài tập Toán 12 chương trình Chân trời sáng tạo một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và dễ tiếp thu nhất.
Cho hàm số (y = fleft( x right)) có đồ thị như hình bên. Biết rằng đạo hàm (f'left( x right)) liên tục trên (mathbb{R}). Tính (intlimits_{ - 1}^1 {f'left( x right)dx} ).
Đề bài
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình bên. Biết rằng đạo hàm \(f'\left( x \right)\) liên tục trên \(\mathbb{R}\). Tính \(\int\limits_{ - 1}^1 {f'\left( x \right)dx} \).
Phương pháp giải - Xem chi tiết
Sử dụng định nghĩa tích phân.
Lời giải chi tiết
Dựa vào đồ thị hàm số ta có: \(f\left( { - 1} \right) = - 1,f\left( 1 \right) = 2\).
\(\int\limits_{ - 1}^1 {f'\left( x \right)dx} = f\left( 1 \right) = f\left( { - 1} \right) = 2 - \left( { - 1} \right) = 3\).
Bài 5 trang 25 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, quy tắc tính đạo hàm, và ứng dụng của đạo hàm để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và kỹ năng giải toán là yếu tố then chốt để hoàn thành bài tập này một cách hiệu quả.
Bài 5 trang 25 thường bao gồm các dạng bài tập sau:
Để giải bài 5 trang 25 sách bài tập Toán 12 Chân trời sáng tạo, bạn có thể thực hiện theo các bước sau:
Ví dụ: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.
Giải:
f'(x) = 3x2 + 4x - 5
Để giải bài tập đạo hàm nhanh chóng và hiệu quả, bạn có thể áp dụng một số mẹo sau:
Để học tập và ôn luyện kiến thức về đạo hàm, bạn có thể tham khảo các tài liệu sau:
Bài 5 trang 25 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm. Hy vọng rằng với hướng dẫn chi tiết và các mẹo giải nhanh mà chúng tôi đã cung cấp, bạn sẽ có thể giải quyết bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tập tốt!