Logo Header
  1. Môn Toán
  2. Giải bài 5 trang 25 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 5 trang 25 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 5 trang 25 Sách bài tập Toán 12 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài 5 trang 25 sách bài tập Toán 12 chương trình Chân trời sáng tạo một cách nhanh chóng và hiệu quả.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và dễ tiếp thu nhất.

Cho hàm số (y = fleft( x right)) có đồ thị như hình bên. Biết rằng đạo hàm (f'left( x right)) liên tục trên (mathbb{R}). Tính (intlimits_{ - 1}^1 {f'left( x right)dx} ).

Đề bài

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình bên. Biết rằng đạo hàm \(f'\left( x \right)\) liên tục trên \(\mathbb{R}\). Tính \(\int\limits_{ - 1}^1 {f'\left( x \right)dx} \).

Giải bài 5 trang 25 sách bài tập toán 12 - Chân trời sáng tạo 1

Phương pháp giải - Xem chi tiếtGiải bài 5 trang 25 sách bài tập toán 12 - Chân trời sáng tạo 2

Sử dụng định nghĩa tích phân.

Lời giải chi tiết

Dựa vào đồ thị hàm số ta có: \(f\left( { - 1} \right) = - 1,f\left( 1 \right) = 2\).

\(\int\limits_{ - 1}^1 {f'\left( x \right)dx} = f\left( 1 \right) = f\left( { - 1} \right) = 2 - \left( { - 1} \right) = 3\).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 5 trang 25 sách bài tập toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục đề toán lớp 12 trên nền tảng toán math. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 5 trang 25 Sách bài tập Toán 12 - Chân trời sáng tạo: Tổng quan

Bài 5 trang 25 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, quy tắc tính đạo hàm, và ứng dụng của đạo hàm để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và kỹ năng giải toán là yếu tố then chốt để hoàn thành bài tập này một cách hiệu quả.

Nội dung bài tập

Bài 5 trang 25 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của các hàm số đơn thức, đa thức, và các hàm số phức tạp hơn.
  • Áp dụng quy tắc tính đạo hàm: Vận dụng các quy tắc như quy tắc cộng, trừ, nhân, chia, quy tắc hàm hợp để tính đạo hàm.
  • Giải phương trình đạo hàm: Tìm nghiệm của phương trình đạo hàm để xác định các điểm cực trị, điểm uốn của hàm số.
  • Ứng dụng đạo hàm để giải quyết các bài toán thực tế: Sử dụng đạo hàm để tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số, hoặc để giải quyết các bài toán liên quan đến tốc độ thay đổi.

Hướng dẫn giải chi tiết

Để giải bài 5 trang 25 sách bài tập Toán 12 Chân trời sáng tạo, bạn có thể thực hiện theo các bước sau:

  1. Xác định dạng bài tập: Xác định xem bài tập thuộc dạng nào trong các dạng bài tập đã nêu ở trên.
  2. Áp dụng kiến thức và công thức: Lựa chọn các kiến thức và công thức phù hợp để giải quyết bài tập.
  3. Thực hiện các phép tính: Thực hiện các phép tính một cách cẩn thận và chính xác.
  4. Kiểm tra lại kết quả: Kiểm tra lại kết quả để đảm bảo tính đúng đắn.

Ví dụ minh họa

Ví dụ: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.

Giải:

f'(x) = 3x2 + 4x - 5

Mẹo giải nhanh

Để giải bài tập đạo hàm nhanh chóng và hiệu quả, bạn có thể áp dụng một số mẹo sau:

  • Nắm vững các công thức đạo hàm cơ bản: Việc nắm vững các công thức đạo hàm cơ bản sẽ giúp bạn tiết kiệm thời gian và công sức.
  • Sử dụng bảng đạo hàm: Bảng đạo hàm là một công cụ hữu ích để tra cứu các công thức đạo hàm.
  • Luyện tập thường xuyên: Luyện tập thường xuyên sẽ giúp bạn rèn luyện kỹ năng giải toán và làm quen với các dạng bài tập khác nhau.

Tài liệu tham khảo

Để học tập và ôn luyện kiến thức về đạo hàm, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 12 Chân trời sáng tạo
  • Sách bài tập Toán 12 Chân trời sáng tạo
  • Các trang web học toán online uy tín
  • Các video bài giảng về đạo hàm

Kết luận

Bài 5 trang 25 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm. Hy vọng rằng với hướng dẫn chi tiết và các mẹo giải nhanh mà chúng tôi đã cung cấp, bạn sẽ có thể giải quyết bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 12