Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 1 trang 64 sách bài tập Toán 12 Chân trời sáng tạo. Bài viết này cung cấp phương pháp giải bài tập, đáp án chính xác và các kiến thức liên quan để giúp học sinh hiểu rõ hơn về nội dung bài học.
Chúng tôi luôn cố gắng cung cấp những giải pháp học tập tốt nhất, giúp các bạn học sinh nắm vững kiến thức và đạt kết quả cao trong môn Toán.
Cho hai mặt phẳng \(\left( P \right):x + 2y - z + 3 = 0\) và \(\left( Q \right):x - 4y + \left( {m - 1} \right)z + 1 = 0\) với \(m\) là tham số. Tìm giá trị của tham số \(m\) để mặt phẳng \(\left( P \right)\) vuông góc với mặt phẳng \(\left( Q \right)\).
Đề bài
Cho hai mặt phẳng \(\left( P \right):x + 2y - z + 3 = 0\) và \(\left( Q \right):x - 4y + \left( {m - 1} \right)z + 1 = 0\) với \(m\) là tham số. Tìm giá trị của tham số \(m\) để mặt phẳng \(\left( P \right)\) vuông góc với mặt phẳng \(\left( Q \right)\).
Phương pháp giải - Xem chi tiết
Cho hai mặt phẳng \(\left( {{\alpha _1}} \right):{A_1}x + {B_1}y + {C_1}{\rm{z}} + {D_1} = 0\) và \(\left( {{\alpha _2}} \right):{A_2}x + {B_2}y + {C_2}{\rm{z}} + {D_2} = 0\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}} = \left( {{A_1};{B_1};{C_1}} \right),\overrightarrow {{n_2}} = \left( {{A_2};{B_2};{C_2}} \right)\).
Khi đó \(\left( {{\alpha _1}} \right) \bot \left( {{\alpha _2}} \right) \Leftrightarrow \overrightarrow {{n_1}} .\overrightarrow {{n_2}} = 0 \Leftrightarrow {A_1}{A_2} + {B_1}{B_2} + {C_1}{C_2} = 0\)
Lời giải chi tiết
Mặt phẳng \(\left( P \right)\) có vectơ pháp tuyến \(\overrightarrow {{n_1}} = \left( {1;2; - 1} \right)\), mặt phẳng \(\left( Q \right)\) có vectơ pháp tuyến \(\overrightarrow {{n_2}} = \left( {1; - 4;m - 1} \right)\).
\(\left( P \right) \bot \left( Q \right) \Leftrightarrow \overrightarrow {{n_1}} .\overrightarrow {{n_2}} = 0 \Leftrightarrow 1.1 + 2.\left( { - 4} \right) + \left( { - 1} \right).\left( {m - 1} \right) = 0 \Leftrightarrow m = - 6\).
Bài 1 trang 64 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Việc nắm vững các công thức đạo hàm cơ bản và kỹ năng tính đạo hàm là yếu tố then chốt để hoàn thành bài tập này.
Bài 1 trang 64 sách bài tập Toán 12 Chân trời sáng tạo thường bao gồm các dạng bài tập sau:
Để giải bài 1 trang 64 sách bài tập Toán 12 Chân trời sáng tạo hiệu quả, bạn có thể áp dụng các phương pháp sau:
(Giả sử bài tập cụ thể là: Tính đạo hàm của hàm số f(x) = x2 + 2x - 1 tại x = 1)
Lời giải:
Ta có f'(x) = 2x + 2. Thay x = 1 vào, ta được f'(1) = 2(1) + 2 = 4.
Vậy, đạo hàm của hàm số f(x) tại x = 1 là 4.
Ngoài bài tập trên, bạn có thể gặp các dạng bài tập tương tự như:
Đối với các dạng bài tập này, bạn cần nắm vững các công thức đạo hàm của các hàm số lượng giác, hàm số mũ và kỹ năng giải phương trình.
Khi giải bài tập về đạo hàm, bạn cần lưu ý những điều sau:
Để học tập và ôn luyện kiến thức về đạo hàm, bạn có thể tham khảo các tài liệu sau:
Bài 1 trang 64 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và các phương pháp giải bài tập được trình bày trong bài viết này, các bạn học sinh sẽ tự tin hơn khi đối mặt với các bài tập tương tự.