Logo Header
  1. Môn Toán
  2. Giải bài 6 trang 32 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 6 trang 32 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 6 trang 32 Sách bài tập Toán 12 - Chân trời sáng tạo

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 6 trang 32 sách bài tập Toán 12 Chân trời sáng tạo. Bài viết này cung cấp đáp án, phương pháp giải và giải thích rõ ràng từng bước để giúp học sinh hiểu bài và làm bài tập một cách hiệu quả.

Chúng tôi luôn cố gắng cung cấp nội dung chính xác, dễ hiểu và cập nhật mới nhất để hỗ trợ tối đa cho quá trình học tập của bạn.

Ta đã biết đồ thị hàm số \(y = \frac{{2{\rm{x}} - 1}}{{x + 1}}\) có tiệm cận đứng là đường thẳng \(x = - 1\) và tiệm cận ngang là đường thẳng \(y = 2\). a) Tìm toạ độ giao điểm \(I\) của đường tiệm cận. b) Với \(t\) tuỳ ý \(\left( {t \ne 0} \right)\), gọi \(M\) và \(M'\) lần lượt là hai điểm trên đồ thị hàm số có hoành độ lần lượt là \({x_M} = {x_I} - t\) và \({x_{M'}} = {x_I} + t\). Tìm các tung độ \(y\left( {{x_M}} \right)\) và \(y\left( {{x_{M'}}} \right)\). Từ đó, chứng minh rằng hai đ

Đề bài

Ta đã biết đồ thị hàm số \(y = \frac{{2{\rm{x}} - 1}}{{x + 1}}\) có tiệm cận đứng là đường thẳng \(x = - 1\) và tiệm cận ngang là đường thẳng \(y = 2\).

a) Tìm toạ độ giao điểm \(I\) của đường tiệm cận.

b) Với \(t\) tuỳ ý \(\left( {t \ne 0} \right)\), gọi \(M\) và \(M'\) lần lượt là hai điểm trên đồ thị hàm số có hoành độ lần lượt là \({x_M} = {x_I} - t\) và \({x_{M'}} = {x_I} + t\). Tìm các tung độ \(y\left( {{x_M}} \right)\) và \(y\left( {{x_{M'}}} \right)\).

Từ đó, chứng minh rằng hai điểm \(M\) và \(M'\) đối xứng với nhau qua \(I\).

Giải bài 6 trang 32 sách bài tập toán 12 - Chân trời sáng tạo 1

Phương pháp giải - Xem chi tiếtGiải bài 6 trang 32 sách bài tập toán 12 - Chân trời sáng tạo 2

Để chứng minh rằng hai điểm \(M\) và \(M'\) đối xứng với nhau qua \(I\), ta chứng minh \(I\) là trung điểm của \(MM'\).

Lời giải chi tiết

a) Đồ thị hàm số \(y = \frac{{2{\rm{x}} - 1}}{{x + 1}}\) có tiệm cận đứng là đường thẳng \(x = - 1\) và tiệm cận ngang là đường thẳng \(y = 2\) nên giao điểm của hai đường tiệm cận là \(I\left( { - 1;2} \right)\).

b) Ta có: \({x_M} = {x_I} - t = - 1 - t \Rightarrow {y_M} = \frac{{2{{\rm{x}}_M} - 1}}{{{x_M} + 1}} = \frac{{2\left( { - 1 - t} \right) - 1}}{{\left( { - 1 - t} \right) + 1}} = \frac{{2t + 3}}{t}\)

\({x_{M'}} = {x_I} + t = - 1 + t \Rightarrow {y_{M'}} = \frac{{2{{\rm{x}}_{M'}} - 1}}{{{x_{M'}} + 1}} = \frac{{2\left( { - 1 + t} \right) - 1}}{{\left( { - 1 + t} \right) + 1}} = \frac{{2t - 3}}{t}\)

Vì :

\(\begin{array}{l}{x_M} + {x_{M'}} = \left( {{x_I} - t} \right) + \left( {{x_I} + t} \right) = 2{x_I};\\{y_M} + {y_{M'}} = \frac{{2t + 3}}{t} + \frac{{2t - 3}}{t} = \frac{{\left( {2t + 3} \right) + \left( {2t - 3} \right)}}{t} = 4 = 2{y_I}\end{array}\)

nên \(I\) là trung điểm của \(MM'\).

Vậy hai điểm \(M\) và \(M'\) đối xứng với nhau qua \(I\).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 6 trang 32 sách bài tập toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục đề thi toán 12 trên nền tảng tài liệu toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 6 trang 32 Sách bài tập Toán 12 - Chân trời sáng tạo: Tổng quan

Bài 6 trang 32 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này tập trung vào việc vận dụng các quy tắc tính đạo hàm của hàm số, đặc biệt là đạo hàm của tổng, hiệu, tích, thương và đạo hàm hàm hợp. Việc nắm vững kiến thức về đạo hàm là nền tảng quan trọng để giải quyết các bài toán liên quan đến cực trị, điểm uốn và ứng dụng của đạo hàm trong các lĩnh vực khác.

Nội dung bài tập

Bài 6 trang 32 sách bài tập Toán 12 Chân trời sáng tạo thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số: Yêu cầu học sinh tính đạo hàm của các hàm số đơn giản và phức tạp, sử dụng các quy tắc đạo hàm đã học.
  • Tìm đạo hàm cấp hai: Yêu cầu học sinh tính đạo hàm cấp hai của hàm số, tức là đạo hàm của đạo hàm bậc nhất.
  • Ứng dụng đạo hàm để giải quyết các bài toán thực tế: Yêu cầu học sinh sử dụng đạo hàm để giải quyết các bài toán liên quan đến vận tốc, gia tốc, tối ưu hóa và các bài toán khác.

Lời giải chi tiết bài 6 trang 32

Để giúp học sinh hiểu rõ hơn về cách giải bài 6 trang 32, chúng ta sẽ đi vào giải chi tiết từng câu hỏi. Dưới đây là lời giải chi tiết cho từng phần của bài tập:

Câu a: Tính đạo hàm của hàm số f(x) = x^3 + 2x^2 - 5x + 1

Để tính đạo hàm của hàm số f(x) = x^3 + 2x^2 - 5x + 1, ta sử dụng quy tắc đạo hàm của tổng, hiệu và lũy thừa:

f'(x) = (x^3)' + (2x^2)' - (5x)' + (1)'

f'(x) = 3x^2 + 4x - 5 + 0

f'(x) = 3x^2 + 4x - 5

Câu b: Tìm đạo hàm cấp hai của hàm số g(x) = sin(x) + cos(x)

Để tìm đạo hàm cấp hai của hàm số g(x) = sin(x) + cos(x), ta thực hiện các bước sau:

g'(x) = (sin(x))' + (cos(x))'

g'(x) = cos(x) - sin(x)

g''(x) = (cos(x))' - (sin(x))'

g''(x) = -sin(x) - cos(x)

Câu c: Ứng dụng đạo hàm để tìm vận tốc của một vật chuyển động thẳng đều với phương trình s(t) = 2t^2 + 3t - 1

Vận tốc của vật được tính bằng đạo hàm của quãng đường theo thời gian:

v(t) = s'(t) = (2t^2 + 3t - 1)'

v(t) = 4t + 3

Vậy vận tốc của vật tại thời điểm t là v(t) = 4t + 3.

Mẹo giải bài tập đạo hàm hiệu quả

Để giải bài tập đạo hàm một cách hiệu quả, bạn có thể áp dụng các mẹo sau:

  • Nắm vững các quy tắc đạo hàm cơ bản: Quy tắc đạo hàm của tổng, hiệu, tích, thương, hàm hợp, đạo hàm của các hàm số lượng giác, hàm mũ, hàm logarit.
  • Phân tích cấu trúc của hàm số: Xác định hàm số chính và các hàm số thành phần để áp dụng quy tắc đạo hàm phù hợp.
  • Thực hành thường xuyên: Giải nhiều bài tập khác nhau để rèn luyện kỹ năng và làm quen với các dạng bài tập.
  • Sử dụng các công cụ hỗ trợ: Sử dụng máy tính cầm tay hoặc các phần mềm tính đạo hàm để kiểm tra kết quả và tiết kiệm thời gian.

Kết luận

Bài 6 trang 32 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng để củng cố kiến thức về đạo hàm. Hy vọng rằng với lời giải chi tiết và các mẹo giải bài tập hiệu quả mà chúng tôi đã cung cấp, bạn sẽ tự tin hơn trong việc giải quyết các bài toán liên quan đến đạo hàm.

Giaitoan.edu.vn luôn đồng hành cùng bạn trên con đường chinh phục môn Toán. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 12