Logo Header
  1. Môn Toán
  2. Giải bài 6 trang 11 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 6 trang 11 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 6 trang 11 Sách bài tập Toán 12 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12 Chân trời sáng tạo. Bài viết này sẽ hướng dẫn bạn từng bước giải bài 6 trang 11 sách bài tập, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.

Đạo hàm (f'left( x right)) của hàm số (y = fleft( x right)) có đồ thị như Hình 4. Xét tính đơn điệu và tìm các điểm cực trị của hàm số (y = fleft( x right)).

Đề bài

Đạo hàm \(f'\left( x \right)\) của hàm số \(y = f\left( x \right)\) có đồ thị như Hình 4. Xét tính đơn điệu và tìm các điểm cực trị của hàm số \(y = f\left( x \right)\).

Giải bài 6 trang 11 sách bài tập toán 12 - Chân trời sáng tạo 1

Phương pháp giải - Xem chi tiếtGiải bài 6 trang 11 sách bài tập toán 12 - Chân trời sáng tạo 2

Từ đồ thị hàm số \(y = f'\left( x \right)\), lập bảng biến thiên của hàm số \(y = f\left( x \right)\) rồi xác định tính đồng biến, nghịch biến, cực trị của hàm số.

Lời giải chi tiết

Từ đồ thị, ta có \(f'\left( x \right) > 0\) trên các khoảng \(\left( { - 3; - 2} \right)\) và \(\left( {1;2} \right)\), \(f'\left( x \right) < 0\) trên các khoảng \(\left( { - 2;0} \right)\) và \(\left( {0;1} \right)\). Do đó ta có bảng biến thiên:

Giải bài 6 trang 11 sách bài tập toán 12 - Chân trời sáng tạo 3

Hàm số \(y = f\left( x \right)\) đồng biến trên các khoảng \(\left( { - 3; - 2} \right)\) và \(\left( {1;2} \right)\), nghịch biến trên khoảng \(\left( { - 2;1} \right)\).

Hàm số đạt cực đại tại \(x = - 2\) và đạt cực tiểu tại \({\rm{x}} = 1\).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 6 trang 11 sách bài tập toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục giải bài tập toán 12 trên nền tảng tài liệu toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 6 trang 11 Sách bài tập Toán 12 - Chân trời sáng tạo: Tổng quan

Bài 6 trang 11 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, quy tắc tính đạo hàm, và các ứng dụng của đạo hàm để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và luyện tập thường xuyên là chìa khóa để thành công trong việc giải bài tập này.

Nội dung bài 6 trang 11 Sách bài tập Toán 12 - Chân trời sáng tạo

Bài 6 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của các hàm số đơn thức, đa thức, và các hàm số phức tạp hơn.
  • Áp dụng quy tắc tính đạo hàm: Vận dụng các quy tắc như quy tắc cộng, trừ, nhân, chia, quy tắc hàm hợp để tính đạo hàm.
  • Giải phương trình đạo hàm: Tìm nghiệm của phương trình đạo hàm để xác định các điểm cực trị, điểm uốn của hàm số.
  • Ứng dụng đạo hàm để giải quyết các bài toán thực tế: Sử dụng đạo hàm để tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số, hoặc để giải các bài toán liên quan đến tốc độ thay đổi.

Hướng dẫn giải chi tiết bài 6 trang 11

Để giải bài 6 trang 11 một cách hiệu quả, bạn cần thực hiện theo các bước sau:

  1. Đọc kỹ đề bài: Xác định rõ yêu cầu của bài toán, các dữ kiện đã cho, và các điều kiện ràng buộc.
  2. Xác định kiến thức cần sử dụng: Xác định các công thức, định lý, và quy tắc đạo hàm cần thiết để giải bài toán.
  3. Thực hiện các phép tính đạo hàm: Sử dụng các quy tắc đạo hàm để tính đạo hàm của hàm số.
  4. Giải phương trình đạo hàm: Tìm nghiệm của phương trình đạo hàm để xác định các điểm cực trị, điểm uốn của hàm số.
  5. Kiểm tra lại kết quả: Đảm bảo rằng kết quả của bạn là chính xác và phù hợp với yêu cầu của bài toán.

Ví dụ minh họa

Ví dụ: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.

Giải:

f'(x) = 3x2 + 4x - 5

Mẹo giải nhanh

Để giải nhanh các bài tập về đạo hàm, bạn có thể sử dụng các mẹo sau:

  • Nắm vững các công thức đạo hàm cơ bản: Việc thuộc lòng các công thức đạo hàm cơ bản sẽ giúp bạn tiết kiệm thời gian và tránh sai sót.
  • Sử dụng bảng đạo hàm: Bảng đạo hàm là một công cụ hữu ích để tra cứu các công thức đạo hàm.
  • Luyện tập thường xuyên: Việc luyện tập thường xuyên sẽ giúp bạn làm quen với các dạng bài tập và nâng cao kỹ năng giải toán.

Lưu ý quan trọng

Khi giải các bài tập về đạo hàm, bạn cần lưu ý những điều sau:

  • Đảm bảo rằng hàm số xác định trên miền xét: Nếu hàm số không xác định trên miền xét, thì đạo hàm của hàm số cũng không xác định.
  • Sử dụng đúng quy tắc đạo hàm: Việc sử dụng sai quy tắc đạo hàm sẽ dẫn đến kết quả sai.
  • Kiểm tra lại kết quả: Luôn kiểm tra lại kết quả của bạn để đảm bảo tính chính xác.

Tài liệu tham khảo

Để học tập và ôn luyện kiến thức về đạo hàm, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 12 Chân trời sáng tạo
  • Sách bài tập Toán 12 Chân trời sáng tạo
  • Các trang web học toán online uy tín

Kết luận

Hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài 6 trang 11 sách bài tập Toán 12 Chân trời sáng tạo một cách hiệu quả. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 12