Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 7 trang 32 sách bài tập Toán 12 chương trình Chân trời sáng tạo. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các kỳ thi.
Chúng tôi hiểu rằng việc giải các bài tập toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải chi tiết, từng bước, giúp bạn hiểu rõ bản chất của bài toán.
Cho hàm số \(y = \frac{{2{\rm{x}} - 1}}{{ - x + 3}}\). Chứng tỏ rằng đường thẳng \(y = - x\) cắt đồ thị hàm số đã cho tại hai điểm phân biệt.
Đề bài
Cho hàm số \(y = \frac{{2{\rm{x}} - 1}}{{ - x + 3}}\). Chứng tỏ rằng đường thẳng \(y = - x\) cắt đồ thị hàm số đã cho tại hai điểm phân biệt.
Phương pháp giải - Xem chi tiết
Viết phương trình hoành độ giao điểm, chứng minh phương trình có hai nghiệm phân biệt.
Lời giải chi tiết
Phương trình hoành độ giao điểm:
\(\frac{{2{\rm{x}} - 1}}{{ - x + 3}} = - x \Leftrightarrow \left\{ \begin{array}{l}x \ne 3\\2{\rm{x}} - 1 = - x\left( { - x + 3} \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne 3\\2{\rm{x}} - 1 = {x^2} - 3{\rm{x}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne 3\\{x^2} - 5{\rm{x}} + 1 = 0\left( * \right)\end{array} \right.\)
Ta có: \(\Delta = {\left( { - 5} \right)^2} - 4.1.1 = 21 > 0\) và \({3^2} - 5.3 + 1 = - 5 \ne 0\) nên phương trình (*) có hai nghiệm phân biệt khác 3.
Vậy đường thẳng \(y = - x\) cắt đồ thị hàm số đã cho tại hai điểm phân biệt.
Bài 7 trang 32 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của các hàm số cơ bản như hàm số đa thức, hàm số lượng giác, hàm số mũ, hàm số logarit và các phép toán trên hàm số. Việc nắm vững các quy tắc này là nền tảng quan trọng để giải quyết các bài toán phức tạp hơn trong chương trình học.
Bài 7 thường bao gồm các dạng bài tập sau:
Để giải các bài tập đạo hàm một cách hiệu quả, bạn cần:
Ví dụ 1: Tính đạo hàm của hàm số y = 2x4 - 3x2 + 5.
Giải:
y' = 8x3 - 6x
Ví dụ 2: Tính đạo hàm của hàm số y = sin(3x).
Giải:
y' = 3cos(3x)
Để củng cố kiến thức, bạn có thể tự giải các bài tập sau:
Bài 7 trang 32 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp bạn rèn luyện kỹ năng tính đạo hàm. Hy vọng với những hướng dẫn chi tiết và ví dụ minh họa trên, bạn đã nắm vững kiến thức và tự tin giải quyết các bài tập tương tự. Chúc bạn học tập tốt!
Hàm số y | Đạo hàm y' |
---|---|
C (hằng số) | 0 |
xn | nxn-1 |
sin x | cos x |
cos x | -sin x |
ex | ex |
ln x | 1/x |