Logo Header
  1. Môn Toán
  2. Giải bài 6 trang 63 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 6 trang 63 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 6 trang 63 Sách bài tập Toán 12 - Chân trời sáng tạo

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 6 trang 63 sách bài tập Toán 12 Chân trời sáng tạo. Bài viết này cung cấp đáp án, phương pháp giải và giải thích rõ ràng, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Chúng tôi luôn cố gắng cung cấp nội dung chính xác, dễ hiểu và cập nhật mới nhất để hỗ trợ tối đa cho quá trình học tập của bạn.

Cho hình hộp (ABCD.A'B'C'D') có tất cả các cạnh bằng (a) và cho biết (widehat {BAD} = widehat {BAA'} = widehat {DAA'} = {60^ circ }). Tính các tích vô hướng sau: a) (overrightarrow {AB} .overrightarrow {AD} ); b) (overrightarrow {DA} .overrightarrow {DC} ); c) (overrightarrow {AA'} .overrightarrow {AC} ).

Đề bài

Cho hình hộp \(ABCD.A'B'C'D'\) có tất cả các cạnh bằng \(a\) và cho biết \(\widehat {BAD} = \widehat {BAA'} = \widehat {DAA'} = {60^ \circ }\). Tính các tích vô hướng sau:

a) \(\overrightarrow {AB} .\overrightarrow {AD} \);

b) \(\overrightarrow {DA} .\overrightarrow {DC} \);

c) \(\overrightarrow {AA'} .\overrightarrow {AC} \).

Phương pháp giải - Xem chi tiếtGiải bài 6 trang 63 sách bài tập toán 12 - Chân trời sáng tạo 1

Sử dụng tích vô hướng của hai vectơ: \(\overrightarrow a .\overrightarrow b = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow a ,\overrightarrow b } \right)\).

Lời giải chi tiết

Giải bài 6 trang 63 sách bài tập toán 12 - Chân trời sáng tạo 2

a) \(\overrightarrow {AB} .\overrightarrow {AD} = \left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AD} } \right|.\cos \left( {\overrightarrow {AB} ,\overrightarrow {AD} } \right) = AB.AD.\cos \widehat {BA{\rm{D}}} = a.a.\cos {60^ \circ } = \frac{{{a^2}}}{2}\).

b) \(\widehat {A{\rm{D}}C} = {180^ \circ } - \widehat {BAD} = {120^ \circ }\)

\(\overrightarrow {DA} .\overrightarrow {DC} = \left| {\overrightarrow {DA} } \right|.\left| {\overrightarrow {DC} } \right|.\cos \left( {\overrightarrow {DA} ,\overrightarrow {DC} } \right) = DA.DC.\cos \widehat {A{\rm{D}}C} = a.a.\cos {120^ \circ } = - \frac{{{a^2}}}{2}\).

c) \(\widehat {A{\rm{D}}C} = {180^ \circ } - \widehat {BAD} = {120^ \circ }\)

\(\begin{array}{l}\overrightarrow {AA'} .\overrightarrow {AC} = \overrightarrow {AA'} .\left( {\overrightarrow {AB} + \overrightarrow {AD} } \right) = \overrightarrow {AA'} .\overrightarrow {AB} + \overrightarrow {AA'} .\overrightarrow {AD} \\ = \left| {\overrightarrow {AA'} } \right|.\left| {\overrightarrow {AB} } \right|.\cos \left( {\overrightarrow {AA'} ,\overrightarrow {AB} } \right) + \left| {\overrightarrow {AA'} } \right|.\left| {\overrightarrow {AD} } \right|.\cos \left( {\overrightarrow {AA'} ,\overrightarrow {AD} } \right)\\ = AA'.AB.\cos \widehat {BAA'} + AA'.AD.\cos \widehat {DAA'} = a.a.\cos {60^ \circ } + a.a.\cos {60^ \circ } = \frac{{{a^2}}}{2} + \frac{{{a^2}}}{2} = {a^2}\end{array}\).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 6 trang 63 sách bài tập toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục bài toán lớp 12 trên nền tảng môn toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 6 trang 63 Sách bài tập Toán 12 - Chân trời sáng tạo: Tổng quan

Bài 6 trang 63 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của các hàm số cơ bản, kết hợp với các kỹ năng biến đổi đại số để tìm đạo hàm của hàm số phức tạp hơn. Việc nắm vững kiến thức về đạo hàm là nền tảng quan trọng để giải quyết các bài toán liên quan đến cực trị, khoảng đơn điệu và ứng dụng của đạo hàm trong các lĩnh vực khác.

Nội dung bài tập 6 trang 63

Bài tập 6 thường bao gồm các dạng bài sau:

  • Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của các hàm số đa thức, phân thức, hàm lượng giác, hàm mũ, hàm logarit và các hàm hợp.
  • Tìm đạo hàm cấp hai: Yêu cầu tính đạo hàm cấp hai của hàm số, tức là đạo hàm của đạo hàm bậc nhất.
  • Ứng dụng đạo hàm để giải phương trình: Sử dụng đạo hàm để tìm nghiệm của phương trình hoặc chứng minh một đẳng thức.

Phương pháp giải bài tập 6 trang 63

Để giải quyết hiệu quả bài tập 6 trang 63, bạn cần nắm vững các phương pháp sau:

  1. Nắm vững các quy tắc tính đạo hàm: Bao gồm quy tắc đạo hàm của tổng, hiệu, tích, thương, hàm hợp, đạo hàm của các hàm số cơ bản (hàm số mũ, hàm số logarit, hàm số lượng giác).
  2. Biến đổi đại số: Sử dụng các kỹ năng biến đổi đại số để đưa hàm số về dạng đơn giản hơn trước khi tính đạo hàm.
  3. Kiểm tra lại kết quả: Sau khi tính đạo hàm, hãy kiểm tra lại kết quả bằng cách thay các giá trị cụ thể vào hàm số và đạo hàm để đảm bảo tính chính xác.

Ví dụ minh họa giải bài 6 trang 63

Ví dụ: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.

Giải:

f'(x) = (x3)' + (2x2)' - (5x)' + (1)'

f'(x) = 3x2 + 4x - 5 + 0

f'(x) = 3x2 + 4x - 5

Lưu ý khi giải bài tập 6 trang 63

  • Luôn chú ý đến thứ tự thực hiện các phép toán.
  • Sử dụng đúng các quy tắc tính đạo hàm.
  • Kiểm tra lại kết quả để đảm bảo tính chính xác.
  • Luyện tập thường xuyên để nắm vững kiến thức và kỹ năng.

Tài liệu tham khảo

Để học tập và ôn luyện hiệu quả, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 12 Chân trời sáng tạo
  • Sách bài tập Toán 12 Chân trời sáng tạo
  • Các trang web học toán online uy tín
  • Các video bài giảng về đạo hàm

Kết luận

Bài 6 trang 63 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng tính đạo hàm và ứng dụng đạo hàm vào giải quyết các bài toán thực tế. Hy vọng với những hướng dẫn và ví dụ minh họa trên, bạn sẽ tự tin hơn trong việc giải quyết bài tập này và đạt kết quả tốt trong môn Toán 12.

Tài liệu, đề thi và đáp án Toán 12