Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 4 trang 31 sách bài tập Toán 12 Chân trời sáng tạo. Bài viết này cung cấp phương pháp giải bài tập một cách rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin làm bài tập.
Chúng tôi luôn cập nhật nhanh chóng và chính xác các lời giải bài tập Toán 12, đáp ứng nhu cầu học tập của học sinh trên toàn quốc.
Với giá trị nào của \(m\) thì đồ thị của hàm số \(y = - {x^3} - 3{x^2} + mx + 1\) có tâm đối xứng nằm trên trục \(Ox\)? Khi đó, có thể kết luận gì về số giao điểm của đồ thị hàm số với trục hoành?
Đề bài
Với giá trị nào của \(m\) thì đồ thị của hàm số \(y = - {x^3} - 3{x^2} + mx + 1\) có tâm đối xứng nằm trên trục \(Ox\)? Khi đó, có thể kết luận gì về số giao điểm của đồ thị hàm số với trục hoành?
Phương pháp giải - Xem chi tiết
‒ Hoành độ tâm đối xứng là nghiệm của phương trình $y''=0$.
‒ Để kết luận về số giao điểm của đồ thị hàm số với trục hoành, ta dựa vào dấu của tung độ hai cực trị của phương trình \(y' = 0\).
Lời giải chi tiết
\(y'=-3{{x}^{2}}-6x+m;y''=-6x-6;y''=0\Leftrightarrow x=-1\)
Tâm đối xứng \(I\) của đồ thị hàm số có tung độ \(y = - {\left( { - 1} \right)^3} - 3.{\left( { - 1} \right)^2} + m.\left( { - 1} \right) + 1 = - m - 1\).
\(I\) nằm trên trục \(Ox \Leftrightarrow y = 0 \Leftrightarrow - m - 1 = 0 \Leftrightarrow m = - 1\).
Khi \(m = - 1\), hàm số có dạng \(y = - {x^3} - 3{x^2} - x + 1\).
Khi đó \(y' = - 3{x^2} - 6x - 1\).
Phương trình \(y' = 0\) có biệt thức \(\Delta ' = {\left( { - 3} \right)^2} - \left( { - 3} \right).\left( { - 1} \right) = 6 > 0\). Do đó phương trình \(y' = 0\) có hai nghiệm phân biệt, suy ra đồ thị hàm số có hai cực trị đối xứng qua \(I\left( { - 1;0} \right)\).
Do đó tung độ của hai cực trị trái dấu nhau nên đồ thị hàm số cắt trục \(Ox\) tại 3 điểm phân biệt.
Bài 4 trang 31 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Việc nắm vững các công thức đạo hàm cơ bản và kỹ năng tính đạo hàm là yếu tố then chốt để hoàn thành bài tập này một cách hiệu quả.
Bài 4 trang 31 sách bài tập Toán 12 Chân trời sáng tạo thường bao gồm các dạng bài tập sau:
Để giải bài 4 trang 31 sách bài tập Toán 12 Chân trời sáng tạo, học sinh cần thực hiện theo các bước sau:
Dưới đây là lời giải chi tiết bài 4 trang 31 sách bài tập Toán 12 Chân trời sáng tạo:
Giải:
f'(x) = 2x + 2
f'(1) = 2(1) + 2 = 4
Vậy, đạo hàm của hàm số f(x) tại x = 1 là 4.
Giải:
g'(x) = cos(x) - sin(x)
Vậy, đạo hàm của hàm số g(x) là cos(x) - sin(x).
Khi giải bài 4 trang 31 sách bài tập Toán 12 Chân trời sáng tạo, học sinh cần lưu ý những điều sau:
Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:
Để học tốt môn Toán 12, học sinh có thể tham khảo các tài liệu sau:
Bài 4 trang 31 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và phương pháp giải bài tập được trình bày trong bài viết này, học sinh sẽ tự tin hơn khi làm bài tập và đạt kết quả tốt trong môn Toán 12.