Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài 6 trang 76 sách bài tập Toán 12 chương trình Chân trời sáng tạo một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải chi tiết, kèm theo các bước giải rõ ràng, giúp bạn nắm vững kiến thức và kỹ năng giải toán.
Cho điểm (Aleft( {1;2;3} right)). Tính khoảng cách từ (A) đến trục (Oy).
Đề bài
Cho điểm \(A\left( {1;2;3} \right)\). Tính khoảng cách từ \(A\) đến trục \(Oy\).
Phương pháp giải - Xem chi tiết
Tìm điểm \(A'\) là hình chiếu của \(A\) lên trục \(Oy\). Khi đó khoảng cách từ \(A\) đến trục \(Oy\) bằng độ dài đoạn thẳng \(AA'\).
Lời giải chi tiết
Gọi \(A'\) là hình chiếu của \(A\) lên trục \(Oy\). Khi đó \(A'\left( {0;2;0} \right)\).
\(d\left( {A,Oy} \right) = AA' = \left| {\overrightarrow {AA'} } \right| = \sqrt {{{\left( {0 - 1} \right)}^2} + {{\left( {2 - 2} \right)}^2} + {{\left( {0 - 3} \right)}^2}} = \sqrt {10} \).
Bài 6 trang 76 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của các hàm số cơ bản, cũng như các hàm hợp. Việc nắm vững kiến thức về đạo hàm là vô cùng quan trọng, không chỉ cho kỳ thi THPT Quốc gia mà còn là nền tảng cho các môn học ở bậc đại học.
Bài 6 thường bao gồm các dạng bài tập sau:
Để giải quyết hiệu quả bài 6 trang 76, bạn cần nắm vững các kiến thức và kỹ năng sau:
Ví dụ: Tính đạo hàm của hàm số f(x) = x^3 + 2x^2 - 5x + 1.
Giải:
f'(x) = (x^3)' + (2x^2)' - (5x)' + (1)'
f'(x) = 3x^2 + 4x - 5 + 0
f'(x) = 3x^2 + 4x - 5
Ngoài sách bài tập, bạn có thể tham khảo thêm các tài liệu sau:
Bài 6 trang 76 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm. Hy vọng với hướng dẫn chi tiết và các ví dụ minh họa trên, bạn sẽ tự tin giải quyết bài tập này một cách hiệu quả. Chúc bạn học tập tốt!