Logo Header
  1. Môn Toán
  2. Giải bài 3 trang 61 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 3 trang 61 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 3 trang 61 Sách bài tập Toán 12 - Chân trời sáng tạo

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 3 trang 61 sách bài tập Toán 12 Chân trời sáng tạo. Bài viết này cung cấp đáp án đầy đủ, phương pháp giải rõ ràng, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Chúng tôi luôn cố gắng cung cấp nội dung chính xác, dễ hiểu và cập nhật mới nhất để hỗ trợ tối đa cho quá trình học tập của bạn. Hãy cùng theo dõi và giải quyết bài toán này một cách hiệu quả nhé!

Cho mặt phẳng (left( P right):x - 2y + z - 5 = 0). Điểm nào dưới đây thuộc (left( P right))? A. (Mleft( {1;1;6} right)). B. (Nleft( { - 5;0;0} right)). C. (Pleft( {0,0, - 5} right)). D. (Qleft( {2; - 1;5} right)).

Đề bài

Cho mặt phẳng \(\left( P \right):x - 2y + z - 5 = 0\). Điểm nào dưới đây thuộc \(\left( P \right)\)?

A. \(M\left( {1;1;6} \right)\).

B. \(N\left( { - 5;0;0} \right)\).

C. \(P\left( {0,0, - 5} \right)\).

D. \(Q\left( {2; - 1;5} \right)\).

Phương pháp giải - Xem chi tiếtGiải bài 3 trang 61 sách bài tập toán 12 - Chân trời sáng tạo 1

Điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) thuộc mặt phẳng \(\left( P \right):Ax + By + Cz + D = 0\) nếu \(A{x_0} + B{y_0} + C{z_0} + D = 0\).

Lời giải chi tiết

Ta có: \(1 - 2.1 + 6 - 5 = 0\) nên điểm \(M\left( {1;1;6} \right)\) thuộc \(\left( P \right)\).

Chọn A.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 3 trang 61 sách bài tập toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục giải bài tập toán 12 trên nền tảng tài liệu toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 3 trang 61 Sách bài tập Toán 12 - Chân trời sáng tạo: Tổng quan

Bài 3 trang 61 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, quy tắc tính đạo hàm, và ứng dụng của đạo hàm để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và kỹ năng giải toán là rất quan trọng để hoàn thành tốt bài tập này.

Nội dung bài 3 trang 61 Sách bài tập Toán 12 - Chân trời sáng tạo

Bài 3 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số tại một điểm.
  • Tìm đạo hàm của hàm số.
  • Ứng dụng đạo hàm để giải các bài toán liên quan đến cực trị, khoảng đơn điệu của hàm số.
  • Giải các bài toán thực tế liên quan đến đạo hàm.

Hướng dẫn giải bài 3 trang 61 Sách bài tập Toán 12 - Chân trời sáng tạo

Để giải bài 3 trang 61 sách bài tập Toán 12 Chân trời sáng tạo một cách hiệu quả, bạn cần thực hiện các bước sau:

  1. Đọc kỹ đề bài: Xác định rõ yêu cầu của bài toán, các dữ kiện đã cho và các kết quả cần tìm.
  2. Xác định kiến thức cần sử dụng: Xác định các công thức, định lý, quy tắc đạo hàm cần thiết để giải bài toán.
  3. Thực hiện các phép tính: Áp dụng các công thức, định lý, quy tắc đạo hàm để thực hiện các phép tính cần thiết.
  4. Kiểm tra lại kết quả: Đảm bảo rằng kết quả của bạn là chính xác và phù hợp với yêu cầu của bài toán.

Ví dụ minh họa giải bài 3 trang 61 Sách bài tập Toán 12 - Chân trời sáng tạo

Ví dụ: Tính đạo hàm của hàm số f(x) = x2 + 2x - 1 tại x = 1.

Giải:

f'(x) = 2x + 2

f'(1) = 2(1) + 2 = 4

Vậy, đạo hàm của hàm số f(x) tại x = 1 là 4.

Các lưu ý khi giải bài 3 trang 61 Sách bài tập Toán 12 - Chân trời sáng tạo

  • Nắm vững các công thức, định lý, quy tắc đạo hàm.
  • Luyện tập thường xuyên để rèn luyện kỹ năng giải toán.
  • Kiểm tra lại kết quả sau khi giải xong bài toán.
  • Sử dụng máy tính bỏ túi để hỗ trợ tính toán.

Mở rộng kiến thức về đạo hàm

Đạo hàm là một khái niệm quan trọng trong toán học, có nhiều ứng dụng trong các lĩnh vực khác nhau như vật lý, kinh tế, kỹ thuật,... Việc hiểu rõ về đạo hàm sẽ giúp bạn giải quyết các bài toán phức tạp một cách dễ dàng hơn. Bạn có thể tìm hiểu thêm về đạo hàm trong các sách giáo khoa, tài liệu tham khảo, hoặc trên các trang web học toán online.

Bảng tổng hợp các công thức đạo hàm thường dùng

Hàm sốĐạo hàm
f(x) = c (hằng số)f'(x) = 0
f(x) = xnf'(x) = nxn-1
f(x) = sin(x)f'(x) = cos(x)
f(x) = cos(x)f'(x) = -sin(x)

Kết luận

Hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài 3 trang 61 sách bài tập Toán 12 Chân trời sáng tạo một cách hiệu quả. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 12